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The macroscopic behavior of a semiconductor laser medium is described by use of modified rate equations.
The model, valid on time scales greater than 10213 s, explicitly treats carrier temperature as a dynamic vari-
able and includes the nonlinear dependence of the gain function on carrier density and temperature. Gain
suppression that is due to carrier heating is a natural consequence of the model and gives a qualitative expla-
nation of subpicosecond gain dynamics experiments without introducing gain nonlinearity phenomenologi-
cally. We demonstrate the temperature behavior of the laser during transient dynamics near and well above
threshold. By including carrier temperature as a dynamic variable we show that the laser response to an
external perturbation exhibits a noticeable change in the damped oscillations of the photon density compared
with that in models without temperature dynamics. Variation in the evolution of the gain function for dif-
ferent external pulse energies is also demonstrated. © 1998 Optical Society of America
[S0740-3224(98)00603-1]
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1. INTRODUCTION
Gain suppression that is due to carrier heating effects has
become an object of special attention during the past de-
cade. Interest in this phenomenon is fueled by the im-
portance of gain dynamics on the picosecond-to-
femtosecond time scale in semiconductor laser devices.
The results of experiments that investigate ultrafast re-
sponse of a semiconductor laser amplifier indicate sub-
stantial gain suppression,1 which is recognized to be a
consequence of carrier heating effects that are due to the
external signal. Although different aspects of the influ-
ence of carrier heating on the behavior of diode lasers
have also been considered,2–5 the experimental observa-
tion of gain suppression underlines the significance of car-
rier heating effects on a subpicosecond time scale.

The theory of a semiconductor laser based on standard
rate equations6–8 cannot describe gain suppression that is
due to carrier heating. This problem and other problems
in semiconductor laser theory can be treated through the
development of a comprehensive microscopic theory.
This approach was used in the past9–11 and is also cur-
rently under development by several groups of
researchers.12–16 The microscopic (many-body) approach
is essential for describing the medium’s response on time
scales shorter than both the time interval required for es-
tablishment of a quasi-equilibrium distribution of carriers
and the relaxation time of the induced polarization. To
0740-3224/98/031107-13$15.00 ©
describe the response on longer time scales (10213 s and
longer) one can use modified rate equations. This paper
is devoted to the development of the latter approach.

We consider a semiconductor laser as a multicompo-
nent system in which there are three subsystems that
compose a unified dynamic ensemble. These subsystems
are identified as the electrons in the conduction band, the
holes in the valence band, and the lattice. They are char-
acterized by a hierarchy of relaxation times in which the
intrasubsystem relaxation times are shorter than the in-
tersubsystem relaxation times. For time intervals long
enough for quasi-equilibrium to be established, this dif-
ference in relaxation times means that the temperatures
of these subsystems can be different. On time scales
greater than 10212 s,17 the temperatures of the three sub-
systems are usually taken to be equal. Thermal equilib-
rium between the two carrier subsystems is established
much more rapidly; this equal-temperature assumption is
common in the theory of semiconductors. Therefore, on
the subpicosecond time scale, the temperature difference
between carriers and the lattice becomes important in the
dynamic response of the laser, making it necessary to
modify the rate equations for a semiconductor laser by
taking into account gain nonlinearities including tem-
perature dependence. Hence, we consider carrier tem-
perature a dynamic variable.

This paper is organized as follows: In Section 2 we
1998 Optical Society of America
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consider modified rate equations; the temperature depen-
dence of the nonlinear gain is discussed in Section 3.
Section 4 includes the basic equations of our model. The
steady-state regime of operation, linear approximation,
and gain suppression that is due to carrier heating are
considered in Section 5. Basic properties of the model
and carrier temperature behavior in the cw regime as
well as the system response to an external optical signal
are demonstrated in Section 6. We summarize our re-
sults in Section 7.

2. MODIFIED RATE EQUATIONS
We begin with a set of equations describing the time de-
pendence of the slowly varying amplitude of the electro-
magnetic field E and the carrier density n in the semicon-
ductor laser:

dE
dt

5 2
1

2tc
~1 1 iD!E 1 1/2~1 1 ia!gE, (1)

dn
dt

5 J 2 S dn
dt D

sp

2 gW, (2)

where g is the gain function, W [ (hhgr /2)
3 @ uEu2/(8p\v)# is the density of photons in the cavity, h
is the medium’s refractive index, hgr(5c/ngr) is the group-
velocity index, tc is the photon lifetime in the cavity, v is
the frequency of emitted photons, D [ 2(vc 2 v)tc , vc is
the cavity eigenfrequency, a is the linewidth enhance-
ment factor, and J is the effective pumping rate. The
carrier density applies to either electrons or holes, as
their concentrations are equal within the local electroneu-
trality approximation. The term (dn/dt)sp describes the
spontaneous recombination of carriers. This term is usu-
ally replaced by n/tsp , where tsp is a spontaneous recom-
bination time. However, the probability of spontaneous
emission depends on the frequency (energy) of the emit-
ted photons. A more rigorous expression for the sponta-
neous recombination term is derived in Appendix A.

Equations (1) and (2) are widely used to describe semi-
conductor lasers. The functional dependence of g on n is
important in the laser dynamics, and it is relatively com-
mon to apply a linear approximation to this function, g
5 gn(n 2 nt), where gn represents the differential gain
coefficient and nt is the carrier density at transparency.

The carrier density is defined by the integral expres-
sion

n~m, T ! 5 E r~«!f~«, m, T !d«, (3)

where

f~«, m, T ! 5 F1 1 expS « 2 m

kBT D G21

is the Fermi–Dirac distribution function, kB is the Boltz-
mann constant, r («) is the density of states in the conduc-
tion band, « is the energy of an individual electron, and m
is the chemical potential. For definiteness, because n is
the same for electrons and holes, we consider electrons
whenever the word ‘‘carrier’’ is used and take the zero of
energy to be at the top of the valence band.
In recent years carrier temperature has come to be re-
garded as a separate dynamic variable.18–24 Treatment
of the carrier temperature as a dynamic variable requires
modification of rate equations (1) and (2) by an additional
rate equation for the carrier temperature or, equivalently,
for the carrier energy density U. Such an equation is
considered in detail in Refs. 19–24 and elsewhere. Below
we consider the logic behind the rate equation for energy
density.

The energy density of carriers is defined by the integral
expression

U~m, T ! 5 E «r~«!f~«, m, T !d«. (4)

We can derive the rate equation for U by considering en-
ergy balance. As the top of the valence band is chosen to
be the zero level of energy, the energy of the electron sub-
system is reduced by \v with each induced recombination
and by « with each spontaneous recombination. The in-
jection current (pumping) supplies the carrier subsystem
with particles that have an average energy corresponding
to the lattice temperature or higher. Free-carrier ab-
sorption of a photon adds energy \v to the carrier sub-
system. The interaction between the carriers and the
lattice leads to thermal equilibrium at the lattice tem-
perature T0 , which is assumed to remain constant be-
cause the thermal capacity of the lattice is much greater
than that of the carriers. The interaction between elec-
tron and hole subsystems leads to thermal equilibrium
between them. Thermodynamic equilibrium is estab-
lished faster between the electron and the hole sub-
systems than between either of the carrier subsystems
and the lattice; therefore the temperatures of the elec-
trons and the holes can be considered equal.

By combining the processes discussed above we arrive
at an energy balance equation as follows:

d
dt

U~m, T ! 5 2S dU
dt D

Lat

2 S dU
dt D

sp

1 S dU
dt D

pump

2 \vgW 1 \vs f nW. (5)

Here the last two terms are associated with induced in-
terband transitions and free-carrier absorption, respec-
tively, and s f 5 sfngr , where sf is the free-carrier absorp-
tion cross section. The interaction between carriers and
lattice is presented in the form of an ordinary relaxation
term:

S dU
dt D

Lat

5
1
tL

$U@m~T !, T# 2 U@m~T0!, T0#%, (6)

where tL is the carrier–lattice relaxation time. The term
for spontaneous recombination is

S dU
dt D

sp

5 E 1
ts«

«r~«!f~«, m, T !d«, (7)

where ts« denotes the spontaneous recombination time of
carriers with energy «. In Appendix A we have derived
an analytical expression for this term. The pumping
term is controlled by the injection current and the tem-
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perature of the injected carriers. In homostructure la-
sers the temperature of injected carriers can be taken
equal to the lattice temperature. In heterostructure la-
sers the average energy of the injected carriers is higher
than that of carriers in the active region because of the
energy difference between the barrier and the active re-
gion; hence there is injection heating.24

By combining Eqs. (1), (2), and (5) we can study the la-
ser dynamics both analytically and numerically. For
analytical studies it is necessary to obtain functional re-
lationships among the dynamical variables. In the gen-
eral case these relationships cannot be expressed in
closed form. However, with reasonable assumptions
analytical expressions can be obtained in some cases, for
example, for heavily doped semiconductors; these materi-
als are used in most semiconductor devices.

In heavily doped semiconductors the boundary of the
conduction band is vague, so r («) is not equal to zero at
the bottom of the band and penetrates into the bandgap
(« , «g) in the form of an exponential tail25–27:

r~«! 5 r0 exp~«/«d!, (8)

where « is the carrier energy measured from the top of the
valence band, «d is a band tailing parameter determined
by the degree of doping [typical values are approximately
10–30 meV (Refs. 28 and 29)], r0 exp(«g /«d) is the density
of states at the bottom of the conduction band, and «g is
the band-gap energy of the undoped material.

To simplify the analytical calculations we use the fol-
lowing approximation of the Fermi distribution function:

f~«, m, T ! 5 H 1 2
1
2

expS « 2 m

kBT D « < m

1
2

expS m 2 «

kBT D « . m

. (9)

The lower the temperature, the closer this approximation
is to being the true Fermi function. Figure 1 demon-
strates the range of accuracy of the chosen approxima-
tion.

Fig. 1. Exact and approximate Fermi functions at 70 and 300 K.
Calculations of integral (3) and (4), with density func-
tion (8) and by use of approximation (9), lead to the fol-
lowing equations:

n~m, u! 5
r0«d

1 2 u2 expS m

«d
D , (10)

U~m, u! 5
n

1 2 u2 @m~1 2 u2! 1 «d~3u 2 2 1 !#,

(11)

where u 5 kBT/«d . Strictly speaking, these equations
are valid only for u , 1; however, the functional relation-
ship between n and m goes beyond this limitation (see the
discussion in Ref. 28). For u ! 1 one can expand Eqs.
(10) and (11) in terms of u and keep only the lowest-order
terms:

n~m, u! 5 r0«d~1 1 u2!exp~m/«d!, (12)

U~m, u! 5 n~m 2 «d 1 2«du2!. (13)

The band tailing parameter «d can reach values up to sev-
eral tens of millielectron volts.28 Experimental values of
«d up to 36 meV in a semiconductor laser are reported in
Ref. 30, which corresponds to a temperature T ; 420 K.
Even at room temperature u can be less than 1. How-
ever, for larger values of u it is necessary to incorporate a
more accurate approximation for r («). In doped semicon-
ductors for « > «g , r («) must smoothly transform from
the exponential form into a square-root dependence on
(« 2 «g).

The pumping term in Eq. (5) has the meaning of an ef-
fective energy flow into the active region owing to carrier
injection. For simplicity we use the notation

S dU
dt D

pump

[ Q. (14)

In general, Q is an independent parameter of the prob-
lem. In homostructure lasers the pumped carriers have
the same temperature as the lattice, so we can express Q
explicitly, using Eq. (13), as

Q 5 J~m0 2 «d 1 2«du0
2!, (15)

where u0 [ kBT0 /«d and m0 is determined by the equa-
tion

Jtsp 5 r0«d~1 1 u0
2!exp~m0 /«d!. (16)

More generally, the phenomenological term that de-
scribes the pumping current must be replaced by a term
that depends on the gradient of the chemical potential at
the p-n junction. This is beyond the scope of this paper
and will be considered in future research.

3. GAIN FUNCTION
For further analysis the gain function needs to be speci-
fied. A simple form of the gain function was previously
derived to include the temperature dependence20:

g~n, T ! 5 G~n 2 nt 2 nbDT/T0!. (17)

Here T0 is the lattice temperature and DT is the devia-
tion of carrier temperature from that of the lattice. By
solving Eqs. (1), (2), and (5) along with Eq. (17), we can
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demonstrate gain suppression that is due to carrier heat-
ing. However, Eq. (17) leaves the values of G and b un-
determined, and they must be inferred from a quantita-
tive fit to experimental results. Moreover, there are
experimental results1 in which this function fails to give
even a qualitative fit (see the discussion in Section 5 be-
low).

A crucial point for further development of the theory is
a consistent derivation of the gain coefficient g(n, T). It
is highly desirable to obtain an expression that has a form
simple enough to permit analytical and numerical analy-
sis of the dynamics of the system yet more comprehensive
than Eq. (17). Such an analytical expression can be ob-
tained from the single-particle model of interband transi-
tions, which is a valid approximation on time scales
greater than 10213 s. The corresponding expression is
given by28

g~T, m, v! 5 G~v!tanhS m 2 \v

2kBT D . (18)

The frequency-dependent function G(v) has the form

G~v! 5
c3

tspv2h3

A2meff
3

\2
A\v 2 «g (19a)

for transitions from within the conduction band and

G~v! 5
\p2c3

tspv2h3

j

«d
expS \v 2 «g

«d
D (19b)

for transitions from tail states. Here c is the speed of
light in free space and j is the density of dopants.

4. MODEL EQUATIONS
Having established the conditions for the system of modi-
fied rate equations in our model, we can now rewrite Eqs.
(1), (2), and (5) in the form

dE
dt

5 2
1

2tc
~1 1 iD!E 1 1/2@1 1 ia#gE 1 kF,

(20a)

dn
dt

5 J 2 S dn
dt D

sp

2 gW, (20b)

dU
dt

5 2
1
tL

$U@m~T !, T# 2 U@m~T0!, T0#%

2 \vgW 1 \vs f nW 1 Q 2 S dU
dt D

sp

,

(20c)

where the spontaneous recombination terms remain in
symbolic form. Explicit expressions for these terms are
given in Appendix A. The parameters included in these
equations can be determined experimentally or calculated
on the basis of microscopic theory.

The gain function g(T, m, v) is determined by Eq. (18).
The dynamic variables n and U are connected with m and
T through Eqs. (3) and (4). Because these equations are
invertible, m and T can also be considered dynamic vari-
ables. Any pair of functions taken from the different sets
@n, m# and @U, T# can be chosen as dynamic variables for
clarity. In addition, Eqs. (20) are generalized to include
the case of a resonant external electromagnetic field
F(t) 5 F(t)exp(2iv t), where F(t) is a slowly varying
function compared with exp(2iv t) and the parameter k
couples the cavity field with the external field. Note
that, when the external field is pulsed, Eq. (20a) is valid
for pulse durations longer than the cavity photon round-
trip time tr . If an external pulse has a duration shorter
than tr , we must use the traveling-wave equation with
the corresponding boundary conditions, as was done, for
example, in Ref. 31.

To analyze the temperature dynamics we use the fol-
lowing relationship: dU/dt 5 «ndn/dt 1 «udu/dt, where
«n [ ]U/]n and «u [ ]U/]u. By substituting dn/dt
from Eq. (20b) we can rewrite Eq. (20c) in the following
way:

«u

du

dt
5 2

1
tL

$U~m, T ! 2 U@m~T0!, T0#%

1 ~«n 2 \v!gW 1 \vs f nW 2 S dU
dt D

sp

1 Q 1 «nS dn
dt D

sp

2 J«n . (21)

Equation (21) describes either heating or cooling of the
subsystem of carriers. Induced interband transitions, in
principle, can heat or cool carriers in accordance with the
relationship between \v and «n . Recombination of car-
riers always decreases the overall energy; however, if re-
combination takes away less than the average carrier en-
ergy, then the subsystem is heated. In the opposite case,
cooling takes place.

The term («n 2 \v)gW in Eq. (21) describes the tem-
perature variation that is due to induced transitions and
plays an important role in the nonlinear dynamics of a
semiconductor laser. The cw regime of lasing can be un-
stable if this term corresponds to cooling.20 In the case of
amplification (g . 0) the sign of this term is the same as
the sign of «n 2 \v. Using Eqs. (12) and (13) for n and
U, we obtain

«n 2 \v 5 m 1 2«du0
2 2 \v. (22)

In the case of amplification, m 2 \v . 0; therefore «n
2 \v . 0, and there is no cooling that is due to induced
transitions. Hence the temperature instability owing to
carrier cooling by induced transitions, which was pre-
dicted earlier,20 does not exist in this model.

5. CARRIER HEATING INFLUENCE ON
GAIN
We can obtain the steady-state values of the dynamic
variables by setting the left-hand sides of Eqs. (20) to
zero. In steady state the gain is equal to the cavity loss;
therefore

tanhS m 2 \v

2«du D 5
1

Gtc
, (23)

which can be solved for m:
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m 5 \v 1 «du lnS Gtc 1 1
Gtc 2 1 D . (24)

For Gtc @ 1, which is usually the case (see the estima-
tions below),

m 5 \v 1 2«du/Gtc . (25)

Consequently, in the steady-state regime m is close to the
energy of the emitted photons, and (m 2 \v)/(2«du)
! 1. Using the Taylor expansion, we can now reduce
the gain function, Eq. (18), to the following form:

g~u, m, v! 5 G~v!
m 2 \v

2«du
. (26)

Similarly, we can rewrite Eq. (12) in the form

n~m, u! 5 r0«d~1 1 u2!expS \v

«d
D expS m 2 \v

«d
D

> ntS 1 1
m 2 \v

«d
D , (27)

where the transparency density is defined by

nt [ r0«d~1 1 u2!exp~\v/«d!. (28)

Using Eqs. (26) and (27), we can write the gain function
as

g~n, u! 5
1
2

G
u

n 2 nt

nt
5 gn~n 2 nt!, (29)

where the parameter gn 5 G/2ntu is the differential gain
coefficient. Near room temperature, gn ' 1024 cm3 s21,
nt is close to 1018 cm23, and for u ; 0.5 we estimate that
G ' 1014 s21.

Equation (29) shows that heating of the carriers leads
to gain suppression. For small variations of u from u0
and taking into account the temperature dependence of
both gn and nt , we can expand g to first order in Du/u0
[ (u 2 u0)/u0 and obtain

g~n, u! 5 gn0@~n 2 nt0!~1 2 Du/u0! 2 bnDu/u0#,
(30)

with gn0 [ gn(u0), nt0 [ nt(u0), and b [ 2u0
2/

(1 1 u0
2). One can see that the gain function [Eq. (30)]

is different from that of the linear model given by Eq.
(17). If we try to rewrite the gain function [Eq. (30)] in
the form of Eq. (17), we find that b 5 b 1 1, G 5 gn0 ,
and there exists a second temperature-dependent term,
gn0nt0Du/u0 .

It is also relevant to compare Eq. (30) with the follow-
ing form of the nonlinear gain function, which is common
in the literature19,32,33:

g 5 gn~n 2 nt!~1 2 SW !. (31)

We can make this comparison by rewriting Eq. (30) in the
following way:

g 5 gn0~n 2 nt0!@1 2 ~b 1 1 !Du/u0#

2 gn0nt0bDu/u0 , (32)

and applying a Taylor expansion for the fractional tem-
perature difference Du/u0 in terms of W to obtain Du/u0
5 a0 1 a1W 1 ... . In this expression a0 and a1 are
parameters that can be calculated from Eq. (21). The pa-
rameter a0 is the fractional carrier temperature deviation
when W 5 0, and it depends on the pumping characteris-
tics. Now we can present the gain function in the same
way as in Eq. (31) by writing gn 5 gn0@1 2 (b 1 1)a0#
and S 5 @(b 1 1)a1#/@1 2 (b 1 1)a0#. Note, however,
that Eq. (32) includes an additional term,
(2gn0nt0bDu/u0), that also makes a contribution to gain
suppression that is due to carrier heating but that is in-
dependent of n 2 nt0 . This term causes a decrease in g
with an increase in carrier temperature whether there is
gain, transparency, or absorption. We consider the be-
havior of the gain function when there is carrier heating
in the following three cases:

(a) n . nt0 (amplifying medium). The carrier heat-
ing leads to a drop in the gain because both temperature-
dependent terms in the gain function tend to suppress the
gain.

(b) n 5 nt0 (transparent medium). The only nonzero
term in Eq. (32) is negative because of carrier heating,
making the transparent medium absorptive.

(c) n , nt0 (absorbing medium). The two tem-
perature-dependent terms play against each other. One
term (proportional to n 2 nt0) tends to increase g, and
the other term tends to decrease it. When n is close to
nt0 , then the second term dominates, i.e., bnt0 @ (b
1 1)un 2 nt0u, and the gain decreases (absorption in-
creases). When n ! nt0 , then bnt0 ! (b 1 1)un 2 nt0u,
and the gain increases (absorption decreases). Moreover,
these gain changes that are due to carrier heating relax
much faster than the spontaneous recombination time
and can be observed only on the subpicosecond time scale.

Thus, in the cases of gain, transparency, and absorp-
tion (for n ; nt0), the gain function has a minimum when
the carrier temperature is maximum. This is precisely
the behavior that was observed by Kesler and Ippen in
their experiment with laser amplifiers.1 In the case of
absorption when n remains much less than nt0 the gain
function has a peak at the point of maximum carrier heat-
ing. We illustrate these features and other possibilities
in Section 6.

6. NUMERICAL ANALYSIS
In the numerical simulations we analyze the behavior of
the temperature and density of carriers in the conduction
band (including tail states). We use Eqs. (20b) and (20c)
along with the equation for photon density derived in Ap-
pendix C:

dW
dt

1
1
tc

W 2 g~n !W 1 s f nW 5 KWext , (33)

where Wext is the density of photons in an external pulse
that can be injected into the laser with coupling coeffi-
cient K.

We use the following parameter values in the numeri-
cal calculations: spontaneous recombination time tsp
5 2 3 1029 s, temperature (or energy) relaxation time
tL 5 5 3 10213 s, band tailing parameter «d 5 20 meV,
dopant concentration j 5 1018 cm23, free-carrier absorp-
tion cross section sf 5 5 3 10218 cm2, photon energy \v
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5 0.989 eV, bandgap energy «g 5 0.990 eV, refractive
index h 5 3.319, group-velocity index hgr 5 4, lattice
temperature T0 5 70 K, cavity length L 5 200 mm, in-
ternal losses a i 5 40 cm21, and facet reflectivity R1
5 R2 [ R 5 0.32. Also, in the numerical calculations
we use q 5 3; for an explanation of this value see Appen-
dix A. The photon lifetime in the cavity is calculated
from the expression tc

21 5 ngr@a i 1 (2L)21 ln(1/R1R2)#.
We calculated the material characteristics for an
In12xGaxAsyP12y quaternary alloy with y 5 0.55 and
x 5 0.25, using the expressions found in Ref. 7. The val-
ues of the other parameters are consistent with values
reported in the literature.6–8,25,28 We chose the lattice
temperature as the initial condition for the carrier tem-
perature in each numerical experiment.

Figures 2 show the evolution of the three dynamic vari-
ables during a typical laser (Wext 5 0) turn-on transition
through relaxation oscillations to cw behavior. In the cw
regime of laser operation the carrier temperature is af-
fected, in general, by processes such as stimulated emis-
sion, free-carrier absorption, spontaneous recombination,
electron–phonon interactions, and carrier pumping.
Other minor effects (e.g., two-photon absorption) are dis-
regarded in this analysis. Overall, these processes keep
the carrier temperature above the lattice temperature, as
shown in Fig. 2(c).

Figures 3(a) and 3(b) demonstrate the carrier tempera-
ture behavior for laser turn-on at different pumping rates
(Wext 5 0). As one can see, the temperature difference
between the carriers and the lattice in the cw limit be-
comes noticeable at high pumping rates. However, we
find that this temperature difference has a negligible in-
fluence on the output power of the laser. In fact, when
we compare the calculated output power with that calcu-
lated in the model without temperature dynamics we ob-
tain only ;0.1% difference, even when the pumping cur-
rent is 25 times the threshold value. At lower pumping
rates this difference is even smaller.

The carrier temperature behavior in the time interval
between initiation of pumping and laser emission (pump-
ing interval) is determined mainly by spontaneous recom-
bination, electron–phonon interactions, and pumping.
For a degenerate electron gas (which is the case in diode
lasers and amplifiers) spontaneous recombination is al-
ways a heating factor.34 The electron–phonon interac-
tions tend to bring the carrier subsystem into thermal
equilibrium with the lattice. The influence of the pump-
ing on carrier temperature depends on the carrier injec-
tion method and the structure of the semiconductor de-
vice. For simplicity we assume in our numerical analysis
that the temperature of the pumped carriers is equal to
the lattice temperature; i.e., there is no injection heating.
As we see from Figs. 2(c) and 3(a), and 3(b), the carrier
temperature in the pumping interval is slightly higher
than the lattice temperature. This temperature eleva-
tion is due to spontaneous recombination, an effect known
as recombination heating.35

To examine the response of the laser to perturbations,
we apply resonant external optical signals. Figures 4(a)
and 4(b) demonstrate the laser response to Gaussian
pulses with 100-ps and 10-ps durations (FWHM), respec-
tively. The external signals are normalized in such a
way that both pulses carry the same energy, 0.1 pJ, and
the coupling coefficient has the value K 5 1.2
3 1012 s21. The laser is pumped at a rate two times the
threshold value. The photon densities are plotted, along

Fig. 2. Laser transition to cw behavior for pumping at twice the
threshold rate: (a) photon density, (b) carrier density, (c) carrier
temperature (the dotted line represents the lattice temperature).
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with the results of the model assuming equal lattice and
carrier temperatures. When the 100-ps pulse is applied,
the laser response is virtually the same for the model in-
clusive of temperature dynamics as for the one without it;
however, the response to the 10-ps pulse is different.
The oscillations damp faster when the carrier tempera-
ture dynamics is taken into account, and this difference
becomes more noticeable for shorter signal duration.
Thus the carrier temperature dynamics plays a signifi-
cant role in the dynamic response of the laser on time
scales up to several tens of picoseconds.

To demonstrate the gain dynamics of this model on the
subpicosecond time scale we apply an external optical sig-
nal with a duration of 0.4 ps, a time slightly smaller than
the carrier energy relaxation time. For such a short
pulse we must either use the traveling-wave equation
with corresponding boundary conditions or assume a thin
sample of the semiconductor in order to use Eq. (33). We

Fig. 3. Carrier temperature behavior (the dotted line represents
the lattice temperature) for pumping: (a) slightly above thresh-
old, (b) well above threshold.
do the latter, using the same parameter values as men-
tioned above, except for R 5 0.001 (facets assumed anti-
reflection coated), L 5 10 mm (round-trip time of
;0.3 ps), and K 5 5.2 3 1013 s21. We choose the pump-
ing rate in such a way that there is no lasing and keep the
energy of the external pulse the same as in the calcula-
tions of Fig. 4 (0.1 pJ). We are interested in demonstrat-
ing gain dynamics that is due to carrier heating, as dis-
cussed in Section 5. Figure 5 demonstrates the gain
dynamics (time evolution of the normalized gain function
gtc) that is due to the external signal, namely, saturation
and recovery in the cases of amplification, transparency,
and absorption. These results show qualitative agree-
ment between the model developed in this paper and the
experimental results of Ref. 1. These figures correspond
to the situation when bnt0 @ (b 1 1)un 2 nt0u. Because
of this situation we see the dip in the gain function in all
three cases.

Fig. 4. Laser response (solid curves, with temperature dynam-
ics; dotted curves, without temperature dynamics) to an external
0.1-pJ Gaussian pulse peaked at t 5 0: (a) 100-ps pulse width,
(b) 10-ps pulse width.
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Figure 6 demonstrates the gain dynamics in a strongly
absorbing medium that is due to an external optical sig-
nal. We apply external 0.4-ps Gaussian pulses with en-
ergies ranging from 0.1 to 5.0 pJ. The other parameters

Fig. 5. Subpicosecond gain dynamics; gain saturation owing to
carrier heating and recovery in the cases of (a) amplification, (b)
transparency, (c) absorption. The 0.1-pJ external pulse is a
Gaussian of width 0.4 ps peaked at t 5 0.
are the same as in Fig. 5, except that the pumping rate is
chosen to be much smaller, resulting in a much larger ab-
sorption coefficient; note the difference in the scale of the
gain parameter from that of Fig. 5. As was discussed in
Section 5, when the carrier density is sufficiently small
the gain function increases because of carrier heating.
This behavior is shown in Fig. 6 for the 0.1-pJ pulse. In
this case bnt0 ! (b 1 1)un 2 nt0u, and the first
temperature-dependent term in Eq. (32) dominates, in
contrast with Fig. 5(c) where the second term dominates.
This analysis is possible for the 0.1-pJ pulse because our
calculations show that the carrier density is not changed
enough by the applied pulse to invalidate the inequality.
For the higher pulse energies the carrier density changes
enough that both temperature-dependent terms of Eq.
(32) must be considered in interpreting the behavior of
the gain function. For the 0.5- and 1.0-pJ pulses the two
carrier heating terms contribute to the gain function with
opposite signs. For the 5.0-pJ pulse, when the carrier
density becomes close to the transparency density the sec-
ond term becomes dominant and the increase in the gain
function levels off. However, n continues to increase to a
value greater than nt0 , so the first term again becomes
dominant. On the tail of the external pulse the carriers
now cool down, further increasing the gain function. As
we see, an external pulse can make an absorbing sample
transparent and even amplifying for a certain period of
time.

In the numerical analysis above we consider gain dy-
namics that is due to carrier heating only. In reality
there are several effects that influence gain dynamics,
and they cause differences in the detailed evolution of the
gain function. Therefore experimental results can be
more complex than those observed by Kesler and Ippen
(see, e.g., Refs. 36 and 37).

7. DISCUSSION AND SUMMARY
We have developed a system of modified rate equations
describing the interaction of electromagnetic radiation
with semiconductors that includes the carrier tempera-

Fig. 6. Subpicosecond gain dynamics in the case of strong ab-
sorption for four external pulse energies. In each case the ex-
ternal signal is a 0.4-ps Gaussian pulse peaked at t 5 0.
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ture as a dynamic variable. Our model takes into ac-
count the nonlinear functional dependence of the gain co-
efficient on carrier density and temperature. Expansion
of this gain coefficient to lowest order in both density and
temperature illustrates that our model includes addi-
tional gain suppression that was not taken into account in
previous models. This additional gain suppression de-
pends on temperature but not on @n 2 nt0#, and it pro-
duces behavior like that observed in subpicosecond gain
dynamics experiments in semiconductor laser media.1

We investigated the evolution of the dynamical vari-
ables during a typical laser turn-on transition to cw be-
havior. We found that in the cw lasing regime the car-
rier temperature is always greater than the lattice
temperature but that this temperature difference has
little effect on the output power. This result is valid for
conditions near and also well above threshold.

The temperature dynamics, which is central to our
model, is reflected in the behavior of the gain function.
We studied this behavior through the response of a laser
or a laser medium to an applied optical pulse. Gain dy-
namics was indirectly observed in the response of a laser
to a sufficiently short picosecond pulse, where we showed
that there is a noticeable change compared with that of
models without the temperature dynamics. However,
application of a subpicosecond pulse to a laser medium
permits direct observation of gain dynamics. We inves-
tigated the response of weakly amplifying, transparent,
and weakly absorbing media and in all cases found gain
suppression that depends on temperature but not on
@n 2 nt0#. By applying pulses of different energies to
strongly absorbing media, we saw variation in the evolu-
tion of the gain that demonstrates the role played by car-
rier density in addition to that of carrier heating.

The analytical expressions for carrier density, energy
density, and gain function used in our model are math-
ematically valid for heavily doped semiconductors. How-
ever, the region of their validity is wider. Comparison of
the gain function given by Eqs. (18) and (19b) with experi-
ment shows excellent agreement between experimental
and theoretical curves, even for heterostructure lasers for
which the active layer is not necessarily doped.28 This
agreement is a consequence of the fact that, even in un-
doped semiconductors, the energy dependence of the den-
sity of states at the band edge is never described by a
square-root function but rather by an exponential (Ur-
bach tails). This is a result of carrier–carrier and
carrier–phonon interactions.

One of the purposes of our approach to modeling semi-
conductor devices was to develop a simple model. In our
model analytical relations such as Eqs. (10) and (11) in-
volving carrier density, energy density, and chemical po-
tential simplify both the numerical analysis and the
physical interpretation. If we use the general expres-
sions for n and U, Eqs. (3) and (4), the validity of our
model is limited only by the duration of the generated or
external pulses, which cannot be shorter than the times
for the polarization relaxation and the establishment of
quasi-equilibrium. However, in this case the numerical
analysis becomes more complex and the physical interpre-
tation less transparent.

Treatment of interband recombination of carriers as a
many-body effect has become popular in semiconductor
laser physics.12–16 Indeed, for sufficiently large carrier
concentration, the interaction between carriers becomes
significant. Analysis of the results of the research cited
above shows that many-body effects, in general, lead to
the so-called Hartree–Fock/Debye correction to carrier
energy, which can be considered a carrier-density-
dependent renormalization of the bandgap energy.
These effects, as well as local field effects, can be included
in our model by substitution of the renormalized value of
the bandgap energy.

Treatment of semiconductor dynamics on even shorter
(femtosecond) time scales requires a truly microscopic ap-
proach, such as those described in Refs. 12–16 and 38.
The model presented in this paper is valid for any tem-
perature range of practical interest, but greater physical
insight is possible at lower temperatures, where the ana-
lytical expressions that we have derived are more accu-
rate. Because the system of equations has a three-
dimensional phase space, one can expect new,
dynamically complex, behavior that should be experimen-
tally verifiable. Additional studies of this behavior are
currently under way.

APPENDIX A
As was mentioned in Section 2, the spontaneous recombi-
nation term (dn/dt)sp in Eq. (2) is usually replaced by
n/tsp . However, the probability of spontaneous emission
depends on the frequency (energy) of emitted photons.
Therefore a more rigorous expression for the spontaneous
recombination term in Eq. (2) is

S dn
dt D

sp

5 E
0

` 1
ts«

r~«!f~«, m, T !d«, (A1)

where ts« denote the spontaneous recombination time of
carriers with energy «. We assume that ts«

21 ; « q,
where q 5 3 if the matrix element of the dipole moment
can be assumed to be independent of frequency. Calcu-
lation of the dipole moment in a quantum-well structure
gives the frequency dependence v22 (Ref. 39), implying
that q 5 1. We do not exclude the possibility of other
functional dependencies in different cases; therefore, for
the sake of generality, we shall keep q as a parameter.
Let ts0

21 denote the spontaneous recombination rate of
carriers with energy «0 ; then

1
ts«

5
1

ts0
S «

«0
D q

. (A2)

It is convenient to choose «0 5 «g , where «g is the
bandgap energy. Now we can use a binomial series and
keep only the lower-order terms:

« q 5 @«g 1 ~« 2 «g!#q 5 q««g
q21 2 ~q 2 1 !«g

q 1 ... .
(A3)

Such an approximation is reasonable because only energy
levels near the bandgap are populated effectively. This
is true even at high pumping rates that produce carrier
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concentrations of approximately 1018–1019 cm23. Sub-
stituting Eqs. (A2) and (A3) into Eq. (A1), we obtain

S dn
dt D

sp

5
1

ts0
Fq

U~m, T !

«g
2 ~q 2 1 !n~m, T !G , (A4)

where the carrier energy density U is defined in Eq. (4).
Similarly, we obtain an expression for the spontaneous
recombination term in energy density rate equation (5):

S dU
dt D

sp

5
1

ts0
@~q 1 1 !U~m, T ! 2 q«gn~m, T !#.

(A5)

In the theory of a semiconductor laser the parameter
ts0 is assumed to be independent of the carrier density.
Sometimes a linear dependence of ts0 on density is used40;
however, as shown in Appendix B, ts0 has a linear depen-
dence on the carrier density in the case of Boltzmann sta-
tistics and is independent of the carrier density in the
case of a degenerate ensemble. Therefore the indepen-
dence of ts0 on carrier density is a good approximation for
a semiconductor laser.

In doped semiconductors the bottom of the conduction
band is not well defined, and therefore the parameter «g
is not uniquely determined as in the case of pure semicon-
ductors. Because of this, the calculation for the sponta-
neous emission term in doped semiconductors requires
special consideration.

To calculate the spontaneous recombination terms for
heavily doped semiconductors we use the general equa-
tions (A1) and (7), with Eqs. (8) and (9). As before, we
take Eq. (A2) for the spontaneous recombination rate;
however, in this case we use in place of Eq. (A3) the fol-
lowing expansion:

1
ts«

5
1

ts0
S m

«0
D qS 1 1

« 2 m

m D q

>
1

ts0
S m

«0
D q

3 F1 1 q
« 2 m

m
1

q~q 2 1 !

2! S « 2 m

m D 2

1 ...G .
(A6)

This expansion is used because in heavily doped semicon-
ductors the energy levels near m are the most heavily
populated. To lowest order in u [defined after Eq. (11)],
the recombination terms are

S dn
dt D

sp

5
n

ts0
S m

«0
D qS 1 2 q

«d

m
1 2q

«d

m
u2D , (A7)

S dU
dt D

sp

5
n

ts0
S m

«0
D q

@m 2 ~q 1 1 !«d 1 2~q 1 1 !«du2#.

(A8)

By definition «0 is determined by ts0 . Choosing ts0 to be
the experimentally measured spontaneous lifetime of car-
riers near the bottom of the conduction band of the corre-
sponding undoped semiconductor then gives «0 5 «g .
APPENDIX B
Three main processes contribute to the spontaneous re-
combination of carriers41: spontaneous radiative recom-
bination, recombination involving traps, and Auger re-
combination. The rate of recombination involving traps
is proportional to the carrier density n over a wide range
of n. The Auger recombination rate is proportional to n3

and for n < 1019 cm23 is significantly less than the spon-
taneous radiative and trap-involving recombination rates.
The functional dependence of the spontaneous radiative
recombination rate on the density of carriers depends on
the degree of statistical degeneracy of the carriers. We
discuss this problem below.

The spontaneous radiative recombination rate can be
presented in general form as

B~n, T ! 5
4

~2p\!6 E E wcv~p, p8!fe
c~p !fn

v~p8!dpdp8,

(B1)

where wcv(p, p8) is the probability of interband recombi-
nation of carriers with momenta p and p8, and fe

c and fh
v

are distribution functions of carriers in the corresponding
conduction and valence bands. The factor 4 appears be-
cause of the spin degeneracy of electrons and holes.

We can simplify integral (B1) by taking into account
the following circumstances: (i) In an isotropic material,
distribution functions depend only on energy and (ii)
in direct gap semiconductors, optical transitions pre-
serve the momentum of carriers. This means that
wcv(p, p8) > w(«)d(p 2 p8), and Eq. (B1) can be rewrit-
ten in the following form:

B~n, T ! 5
4C

~2p\!3 E w~«!fcS m

me
« D fvS m

mh
« DA«d«,

(B2)

where me,h are electron and hole effective masses in the
conduction and the valence bands, respectively, and

« 5
p2

2m
,

1
m

5
1

me
1

1
mh

,

C 5
4pA2m3/2

~2p\!3 ,

fc,v~«! 5 FexpS « 2 me,h

kBT D 1 1G21

. (B3)

The probability of transition w(«) depends on the car-
rier energy «g 1 «. As far as « is determined by the car-
rier temperature, we can take «g @ « and neglect the en-
ergy dependence of the probability of recombination.
Therefore we can replace w(«) by the constant w0 .

The density of the carriers is defined by

ne,h 5 2CS me,h

m D 3/2E
0

`FexpS « 2 me,h

kBT D 1 1G21

A«d«.

(B4)

If the ensemble of carriers is far from degeneracy,
exp@(« 2 me,h)/(kBT)# @ 1, and in this case we obtain

ne,h 5 CApS me,h

m
kBT D 3/2

expS me,h

kBT D , (B5)
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B~n, T ! 5 nenhE B~T, «!d« 5 nenhB~T !, (B6)

where

B~T ! 5
2

Ap

1

~2p\!3

1

C S m2

memh
D 3/2 w0

~kBT !3/2 . (B7)

Under the condition of electroneutrality, ne 5 nh [ n,
Eq. (B6) leads to a quadratic dependence of the spontane-
ous recombination rate on carrier density.

Consider the case of degeneracy when the distribution
function is equal to 1 for « < me,h and is equal to 0 for
« > me,h . Calculation of integrals (B2) and (B4) gives

ne,h 5
4

3 S me,h

m
me,hD 3/2

C,

B~n, T ! 5 2
w0

~2p\!3

4
3 S me,h

m
me,hD 3/2

,

C 5 2
w0

~2p\!3 n. (B8)

Thus in this case the spontaneous recombination rate
is proportional to the density of carriers; therefore we can
introduce the spontaneous recombination time

1

tsp
5 2

w0

~2p\!3 . (B9)

Apparently the spontaneous recombination rate cannot
be described by a simple analytical formula in any range
of densities and temperatures. Therefore we propose an
approximation of integral (B6) in the form

B~n, T ! 5 B~T !
n2

1 1 n/n0
. (B10)

The ratio n/n0 is known as the degeneracy parameter.42

At n ! n0 , Eq. (B10) is identical to the case of the Boltz-
mann statistics of the carriers. Now we require that Eq.
(B10) be identical to Eqs. (B8) in the other limiting case,
when n @ n0 . From this condition we obtain

n0 5 2S MkBT

2p\2 D 3/2

, M 5 me 1 mh . (B11)

This is an expression for the degeneracy concentration
of the Fermi ensemble of particles with mass M.43 The
typical situation in semiconductors is me ! mh , and n0 is
practically equal to the degeneracy concentration of holes
and significantly higher than that of the electrons in the
conduction band. In a semiconductor laser we deal with
a statistically degenerate ensemble of carriers and, there-
fore, the assumption of linear dependence on carrier den-
sity for spontaneous radiative recombination is justified.

APPENDIX C
We begin with the equation describing the time depen-
dence of the slowly varying amplitude of the electromag-
netic field E:
dE
dt

5 2
1

2tc
~1 1 iD!E 1 1/2@1 1 ia#gE 1 kF,

(20a)

and consider the external signal as a multimode field with
a random modal phase distribution:

F~t ! 5 (
V

FV~t !exp@2i~DVt 1 fV!#, (C1)

where DV 5 V 2 v and wV is randomly distributed in
the interval (0, 2p).

To derive the equation for photon density we write a
formal solution of Eq. (20a) in the form

E 5 k exp@2~1/2!D~t !#E
0

t

exp@~1/2!D~t8!#F~t8!dt8,

(C2)

where

D~t ! 5 E
0

tF 1
tc

2 g 1 i~D 2 ag !Gdt8. (C3)

Solution (C2) satisfies the initial condition that E 5 0 at
t 5 0. This initial condition is chosen for convenience,
because the final result does not depend on initial condi-
tions. In principle we can satisfy any initial condition if
we add to Eq. (C2) the general solution of Eq. (20a) for
F 5 0. We calculate the value EE* , which is propor-
tional to the photon density in a cavity:

EE* 5 k2 exp@2Re D~t !#E
0

t

dt8E
0

t

dt9

3 exp@~1/2!D~t8! 1 ~1/2!D* ~t9!#F~t8!F* ~t9!.

(C4)

Now we must calculate

F~t8!F* ~t9! 5 (
V,V8

FV~t8!FV8* ~t9!

3 exp@2i~DVt8 2 DV8t9 1 fV 2 fV8!#.

(C5)

Assume that the external signal has a broadband spec-
trum so that FV(t) is a slowly varying function of V.
Now split the sum [Eq. (C5)] into two parts:

(
V,V8

FV~t8!FV8* ~t9!exp@2i~DVt8 2 DV8t9 1 fV 2 fV8!#

5 (
V

FV~t8!FV* ~t9!exp@2iDV~t8 2 t9!#

1 (
VÞV8

FV~t8!FV8* ~t9!

3 exp@2i~DVt8 2 DV8t9 1 fV 2 fV8!#. (C6)

Inasmuch as FV(t) is a slowly varying function of V we
can use the following approximation:
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(
V

FV~t8!FV* ~t9!exp@2iDV~t8 2 t9!#

' Fv~t8!Fv* ~t9!(
V

exp@2iDV~t8 2 t9!#, (C7)

(
VÞV8

FV~t8!FV8* ~t9!

3 exp@2i~DV8t8 2 DVt9 1 fV 2 fV8!#

' Fv~t8!Fv* ~t9! (
VÞV8

3 exp@2i~DV8t8 2 DVt9 1 fV 2 fV8!#

5 0. (C8)

The last sum is equal to zero because the phases in the
exponent are randomly distributed in the interval (0, 2p).
Now we replace the sum on the right-hand side of relation
(C7) by the integral

Fv~t8!Fv* ~t9!(
V

exp@2iDV~t8 2 t9!#

'
Fv~t8!Fv* ~t9!

DV0
E exp@2iDV~t8 2 t9!#d~DV!

' 2p
Fv~t8!Fv* ~t9!

DV0
d~t8 2 t9!, (C9)

where DV0 is the frequency interval between adjacent
modes. After substitution of relation (C9) into Eq. (C4)
and integration over t9 we obtain

EE* 5 2p
k2

DV0
exp@2Re D~t !#

3 E
0

t

exp@Re D~t8!#uFv~t8!u2dt8. (C10)

Converting Eq. (C10) back to a differential equation and
multiplying by hhgr /(16p\v), we obtain

dW
dt

1
1
tc

W 2 g~n !W 1 s f nW 5 KWext , (C11)

where Wext(t) [ @hhgr /(DV0tc16p\v)#uFv(t)u2 is the
density of external signal photons, K [ 2pk2tc , and the
term describing the free-carrier absorption (which is
small compared with interband absorption) is introduced
phenomenologically.
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