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CHAPTER 1

INTRODUCTION

Whispering-gallery modes (WGMs) are the natural electromagnetic eigenmodes of

solid spheres with large radial and azimuthal indices. They are activated by external co-

herent signals and propagate around the equator of the spherical shaped object spatially

confined by total internal reflection to a narrow region near the surface. They are elemental

to understanding many of the newly defined, extremely small resonators. The origin of

WGMs is rooted in the surround sound of acoustical whisperings within old architectures

and the combination of curiosity and sequential development of first principles of physics.

There is a famous historical monument in Peking, China, called the Temple of the

Sky where “miracles” occur. Associated with this temple is a rugged wall of stone that

roughly forms the shape of a closed cylinder. The miracle is that low utterances of a person,

spoken while facing one direction along the wall, return back moments later to that person

as if someone just behind the speaker whispered exactly the same sounds. In the 19th

century Lord Rayleigh[1] proposed a physical explanation for this whisper on the basis

of his own experiments in an ancient gallery located at St. Paul’s Cathedral in London,

England. Under the dome of this cathedral, whispers spoken in one direction returned to

the speaker after a small delay just as in the case of the wall of stone in China. Early wave

theory explained the reflection of acoustic “rays”, but it was Lord Rayleigh who proposed

the propagation of these waves along the spherical structure. His experiment involved a

whistle as a sound source and a burning candle as a detector. The 20th century brought a

better understanding of electromagnetic waves and knowledge of their existence as spatial

structures within spherical solid objects primarily through comparison with their acoustical

counterpart.
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Whispering-gallery modes are a specific class of spherical modes that are used to

study many optical problems. Understanding their operating features is important for the

development of any system that incorporates them. Mathematical representation of natural

modes in dielectric spheres is generally attributed to Mie[2] and Debye,[3] but the detailed

study of WGMs is the result of the works by Richtmyer[4] and Stratton.[5] More recently,

L. A. Vainstein provided important new insights into the theory of WGMs. [6]

Renewed interest in WGMs has inspired creative investigations into many different

microtechnologies.[7–39] Microspheres, in particular, are very appealing objects because

of the small effective volumes of their WGMs and their high-Q factors.[7–9] Fused-silica

microspheres have extremely low WGM losses that make them better suited as high-Q

microresonators.[8,37] Such microresonators are shown to have potential use in many ar-

eas, including cavity quantum electrodynamics,[18] laser stabilization,[13] microlasers,[39–41]

nonlinear optics,[10,22,23] and evanescent-wave sensing.[24,42] The utility of a microsphere

resonator can be limited because of the morphology dependence of the resonant frequen-

cies of the WGMs – i.e., the resonant frequencies are fixed by the geometry of the sphere

and thus not easily tunable. However, experimental advances in compression tuning [43–45]

and locking of microsphere WGM resonances[44,45] have improved these conditions by pro-

viding for tuning over a greater range with faster response. Many of these optical systems

employ the technique of coupling light into and out of the WGMs of the microspheres by

using modes of tapered optical fibers (see Fig. 1.1). Although common, this technique

brings light to experimental challenges that are associated with less than ideal conditions

in the coupling process.

Tapering a fiber, by any of several methods, introduces some interesting effects that

must be considered. The fiber configuration often used is the bitaper. A bitaper consists

of a non-tapered portion of the fiber at the first end. This is followed by a taper transition

region where the radius of the fiber decreases with distance. The portion of the fiber after

the transition is known as the taper. This is followed by a second taper transition region of

increasing fiber radius and ends with another non-tapered portion. The non-tapered portion

of a single-mode fiber is designed to support only the fundamental mode because of the

small size of the core relative to the transmission wavelength and because of the low index
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Figure 1.1. Microsphere-Fiber System

contrast between the core and the cladding. However, in the tapered portion of the fiber, the

light is guided by the cladding-air interface and thus the tapered fiber can support multiple

modes. In an ideal adiabatic taper transition, the taper angle is small enough so that the fun-

damental HE11 mode can be considered unperturbed as it evolves from being core guided to

cladding guided. Within a non-ideal or non-adiabatic taper transition, the cladding guided

HE11 mode couples to higher-order fiber modes of the same symmetry. The next higher-

order fiber mode in the same family is the HE12 mode. Before coupling to the microsphere,

the only modes in the tapered portion of the fiber are these two modes, if the taper transi-

tion is sufficiently adiabatic. After coupling with the microsphere, other higher-order fiber

modes may be present. This is because the microsphere mode may couple to any mode

supported by the taper. The radius of the tapered portion of the fiber can be chosen to max-

imize the coupling of the fiber HE11 mode to the microsphere mode, while minimizing the

losses incurred by the coupling of the microsphere’s WGM to the higher-order fiber modes

of different families, because the light in these fiber modes does not couple back into the

HE11 mode at the transmission end of the bitaper. Early arguments[30,46] assume that opti-

mal coupling is accomplished by phase matching the microsphere mode to the fundamental
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fiber mode. However, in agreement with other recent results, [47] it is actually accomplished

by tapering the fiber to a smaller radius than that for phase matching.

Calculation of the WGM spectra for modes of different radial order q and polar or-

der l − |m| includes non-ideal factors that are present under experimental conditions. In

practice, the microsphere usually has an eccentricity. This eccentricity removes the fre-

quency degeneracy of the polar modes. Also, the fact that the tapered fiber may not be ex-

actly aligned with the equatorial plane of the microsphere increases the number of WGMs

to which the fiber may couple. With perfect alignment, only the even (symmetric) polar

modes of the microsphere are excited. With imperfect alignment, both the odd (antisym-

metric) and even polar modes are excited. Presented here are calculations that detail the

effects of varying the size of the tapered-fiber radius and explore the WGM spectra associ-

ated with the non-ideal aspects of an experiment.

Chapter 2 describes waveguides and their electromagnetic modes. In particular,

fused-silica microspheres and fibers are treated. For microspheres, the spectra of their

modes are discussed. For fibers, comparisons are made between traditional fiber modes

and the modes of tapered fibers.

Chapter 3 describes mode coupling. The discussion includes an introduction to cou-

pled mode theory. This is followed by the application of coupled mode theory to the fiber-

microsphere system, and also to the tapered fiber.

Chapter 4 describes applications of the coupled-mode analysis in the fiber-micro-

sphere system. Included are calculations of optimal fiber radius, WGM spectra, and a

discussion of microsphere lasing.

Chapter 5 concludes by summarizing the results and highlighting some of the inter-

esting physics encountered in this study.



CHAPTER 2

WAVEGUIDES

2.1 Ray Picture

The easiest way to describe the operation of a waveguide is with the ray picture.

Waveguides consist of a material of higher index of refraction surrounded by a material of

lower index of refraction. From Snell’s Law, it is known that if the angle of incidence of a

ray originating from the higher index side of an interface is above a certain critical angle,

then the ray will be reflected by total internal reflection. A fused-silica microsphere has

an index of 1.44 which is surrounded either by the index of air (nair = 1.00) or by that

of a liquid (e.g., nmethanol = 1.33 for use in a liquid sensing measurement). Light, once

inside a microsphere, travels around its equator by making numerous reflections. Because

a microsphere is a cavity as well as a waveguide, the light forms a mode when the round-

trip pathlength is a multiple of the light’s wavelength. This is shown in Fig. 2.1, where the

blue circle represents the surface of the microsphere and the red line represents the path

of the internally reflected light. In this case, the mode consists of eight reflections of the

light. A common type of optical fiber is the step-index fiber. This consists of a core of

slightly higher index and a cladding of slightly lower index. Like in the microsphere case,

light travels along the fiber by making numerous reflections at the core-cladding interface.

This is shown in Fig. 2.2. The blue lines represent the surface of the fiber and the red

line represents the path of the internally reflected light. Although the ray picture is useful

for understanding the basic operation of waveguides, it has recently been shown that it is

unreliable for performing calculations.[48] For accurate calculations and predictions to be

made, the wave nature of the light must be considered.

5
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ns

no

Figure 2.1. WGM Ray Trace. The blue circle represents the surface of the microsphere and
the red line represents the path of the internally reflected light. ns and no are
the indices of refraction of the microsphere and the surrounding medium,
respectively. In this case the mode consists of eight reflections of the light.

nco

ncl

Figure 2.2. Step-Index Fiber Ray Trace. The blue lines represent the surface of the fiber
and the red line represents the path of the internally reflected light. nco and
ncl are the indices of refraction of the core and cladding, respectively.

2.2 Unguided and Guided Wave Propagation

The fundamental requirement for an electromagnetic wave to propagate is that its

fields satisfy the wave equation

∇2E − µε
∂2E

∂t2
= µ

∂2P

∂t2
, (2.1)
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where E, P, t, c, µ, and ε are the electric field, polarization, time, speed of light, permeabil-

ity, and permittivity, respectively, in the SI system of units. The bold variables represent

vector quantities. For a medium that is not polarized, the wave equation is

∇2E − µε
∂2E

∂t2
= 0. (2.2)

The simplest solution of this is the plane wave in vacuum,

E(r, t) = E0e
i(ω0t−k0·r), (2.3)

where ω0 is the angular frequency of the light and k0 = ω0

c
k̂ is the wave vector. However,

even in free space, electromagnetic wave profiles do vary in the plane transverse to the

direction of propagation. The electric field for a wave traveling in free space is transverse

to the direction of propagation (as long as the beam diameter is large compared to the

wavelength). In this case, the electric field can be expressed as

E(x, y, z) = E0ψ(x, y, z)e−ik0z. (2.4)

Substitution of this into the wave equation, and assuming that ψ is slowly varying in z,

results in

∇2
tψ − i2k0

∂ψ

∂z
= 0, (2.5)

where ∇2
t is the transverse Laplacian for divergence. Gaussian modes are one particularly

useful set of solutions of the wave equation under this condition and light propagates with

these modes as Gaussian beams. Equation (2.5) has the same form as the Schrödinger

equation. Just as solutions to the Schrödinger equation are discrete in form, families of

solutions of the Maxwell wave equation are also discrete in form. Analogies between

optical systems and quantum mechanical systems are helpful in describing waveguides,

and later, the microsphere-fiber system.

The fields for a waveguide are calculated using the same basic principle as those

in free-space. However, there are two important differences. One is that the longitudinal

components cannot be assumed to be small relative to the transverse components. This

is because of the beam confinement possible in a waveguide (especially in the case of a
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tapered fiber) and also, the presence of the index change. The other difference is that special

attention must be paid to the boundary conditions of the electric and magnetic fields.

The first step in determining the fields of a waveguide is to write the expressions for

the boundary conditions of the fields. This is analogous to a particle in a potential well.

The particle’s wavefunction has one form for the interior region and another form for the

exterior region. The electric and magnetic fields of a waveguide also have different forms

for the interior and exterior portions. The exterior portion of the field is known as the

evanescent part. From the boundary conditions, a characteristic equation is obtained. The

roots of the characteristic equation provide the propagation constants of the allowed modes.

The propagation constant β is basically the effective wavenumber and can be expressed as

β =
neffω

c
, (2.6)

where neff is the effective index of refraction. Modes of a waveguide have a dependence

of e−iβz in the direction of propagation. The higher the order of the mode in a waveguide,

the lower the propagation constant. This corresponds to the mode traveling faster along

the waveguide. This is because the higher-order modes have a higher fraction of their

energy contained in the evanescent part of the field. In a fiber, the fundamental mode has

an effective index close to that of the core, while the highest-order mode has an effective

index close to that of the cladding.

2.3 Microsphere Modes

There are two kinds of microsphere modes - transverse magnetic (TM) and transverse

electric (TE). In the case of TM modes, the magnetic field is tangent to the surface of

the sphere and perpendicular to the direction of propagation. The electric field thus has

components normal to the surface of the sphere and parallel to the direction of propagation.

In the case of TE modes, these properties are reversed. With the use of the scalar Debye

potentials,[49,50] the solutions to the Maxwell equations become

∂2U

∂r2
+

1

r2 cos θ

∂

∂θ

(
cos θ

∂U

∂θ

)
+

1

r2 cos2 θ

∂2U

∂φ2
+ k2U = 0, TM Modes, (2.7a)

∂2V

∂r2
+

1

r2 cos θ

∂

∂θ

(
cos θ

∂V

∂θ

)
+

1

r2 cos2 θ

∂2V

∂φ2
+ k2V = 0, TE Modes, (2.7b)
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where U and V are the scalar potentials and k = ω
c
. Here, the convention is used that the

angle θ is zero at the equator rather than the north pole. The electric and magnetic fields

are found from the scalar potentials:

Er =

(
∂2

∂r2
+ k2

)
U, Hr = 0,

Eθ =
1

r

∂2U

∂r∂θ
, Hθ = −ik1

r

∂U

∂φ
,

Eφ =
1

r cos θ

∂2U

∂r∂φ
, Hφ = ik

1

r

∂U

∂θ
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

TM Modes (2.8)

Hr =

(
∂2

∂r2
+ k2

)
V , Er = 0,

Hθ =
1

r

∂2V

∂r∂θ
, Eθ = ik

1

r

∂V

∂φ
,

Hφ =
1

r cos θ

∂2V

∂r∂φ
, Eφ = −ik1

r

∂V

∂θ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

TE Modes (2.9)

The fields are separable and can be expressed as

Ψqlm(r, θ, φ) = Nsψr(r)ψθ(θ)ψφ(φ), (2.10)

where Ψ is the electric field in the case of TE modes and is the magnetic field in the case

of TM modes. Ns is a normalization constant. The subscripts indicate the order of the

mode (q is the radial mode order, found from the boundary conditions, and the difference

between l and |m| is the polar mode order). From the above, the differential equations for

the dependences on the coordinates are

d2

dr2
ψr +

2

r

d

dr
ψr +

(
k2n2

s −
l(l + 1)

r2

)
ψr = 0, (2.11a)

1

cos θ

d

dθ

(
cos θ

d

dθ
ψθ

)
− m2

cos2 θ
ψθ + l(l + 1)ψθ = 0, (2.11b)

d2ψφ

dφ2
+m2ψφ = 0. (2.11c)

The solutions are found to be

ψr(r) =

⎧⎨
⎩ jl(knsr), r ≤ Rs,

hl(knsr), r > Rs,
(2.12a)

ψθ(θ) = Pm
l (sin θ), (2.12b)

ψφ(φ) = e±imφ, (2.12c)
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where jl and hl are the spherical Bessel functions of first kind and spherical Hankel func-

tions (also known as Bessel functions of third kind), respectively. P m
l are the associated

Legendre polynomials, and Rs is the radius of the sphere. The characteristic equations

found from the continuity conditions are[
(kRs)

1/2Jν(kRs)
]′

(kRs)1/2Jν(kRs)
=

(
ε

µ

)1/2

[
(k0Rs)

1/2H
(1)
ν (k0Rs)

]′
(k0Rs)1/2H

(1)
ν (k0Rs)

,

⎫⎪⎬
⎪⎭TM Modes (2.13a)

[
(kRs)

1/2Jν(kRs)
]′

(kRs)1/2Jν(kRs)
=
(µ
ε

)1/2

[
(k0Rs)

1/2H
(1)
ν (k0Rs)

]′
(k0Rs)1/2H

(1)
ν (k0Rs)

,

⎫⎪⎬
⎪⎭TE Modes (2.13b)

where ν = l + 1/2 relates the spherical Bessel functions jl and hl to the regular Bessel

functions Jν and Hν

For the sphere sizes considered in this study, the values of l and |m| are large. The

computation of the spherical Bessel functions and Associated Legendre Polynomials be-

comes time consuming under these conditions. The computation time is greatly reduced

by approximating the spherical Hankel function as an exponential, and the Associated Leg-

endre Polynomials with Hermite-Gauss functions. The forms of the fields as used in the

calculations are[32]

ψr(r) =

⎧⎨
⎩ jl(knsr), r ≤ Rs,

jl(knsRs)e
−αs(r−Rs), r > Rs,

(2.14a)

ψθ(θ) = HN

(√
mθ
)
e−

m
2

θ2

, m� 1 � θ, (2.14b)

ψφ(φ) = e±imφ, (2.14c)

where

αs =
√
β2

l − k2n2
o, βl =

√
l(l + 1)

Rs
,

N = l − |m|.
For TE modes,

Eθ(r, θ, φ) = Ψqlm(r, θ, φ). (2.15)

Because the transverse electric field is parallel to the surface of the microsphere, Eφ = 0

and the total electric field is given by

E(r, θ, φ) = Eθ(r, θ, φ)θ̂. (2.16)
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For TM modes,

Hθ(r, θ, φ) = Ψqlm(r, θ, φ), (2.17)

and the electric field is given by

E(r, θ, φ) = −i 1

ωεon2
∇× θ̂Hθ

= −i 1

ωεon2

(
i

m

r cos θ
Hθr̂ +

(
1

r
Hθ +

d

dr
Hθ

)
φ̂

)
. (2.18)

The characteristic equation is found to be(
ηsαs +

l

Rs

)
jl(knsRs) = knsjl+1(knsRs), (2.19)

where

ηs =

⎧⎪⎨
⎪⎩

1, TE Modes,
n2

s

n2
o

, TM Modes.

A plot of a microsphere TE mode is shown in Fig. 2.3. In this plot, the color change

indicates the surface of the sphere.

The propagation constant for a microsphere is

βm =
m

Rs
. (2.20)

This can be explained using the ray picture. For a fundamental polar mode, where l = m,

an integer number of wavelengths fit along the circumference of the microsphere, or

l =
2πRsneff

λ
, (2.21)

where λ is the vacuum wavelength. As the value of m is decreased, the polar mode order

is increased. In this case, under the ray picture, the path of the light travels along a “zig-

zag” path instead of directly along the greater circle of the microsphere. The propagation

constant along the actual path is

βl =

√
l(l + 1)

Rs

. (2.22)

The propagation constant βm is the projection of βl along the circumference.
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Figure 2.3. Fundamental Microsphere TE Mode (Rs = 300µm, λ = 1550 nm, q = 1,
l = m = 1730). The surface of the sphere is indicated by the color change.
The equator is at y = 0.

In perfectly spherical microspheres, the polar modes are frequency degenerate. This

degeneracy is broken by introducing an eccentricity to the microsphere. The frequencies

of WGMs in such microspheres are given by[13,51]

νi
qlm

∼= δ

[
l +

1

2
+ aq

(
l + 1/2

2

)1/3

− ∆i ± ε2

(
l − |m|

2

)]
, (2.23)

where i denotes TE or TM, δ = c/2πRsns is the microsphere’s nominal free-spectral

range, aq is the absolute value of the q th zero of the Airy function, ∆TE = n/
√
n2 − 1, and

∆TM =
(
n
√
n2 − 1
)−1

, where n = ns/no; the positive sign is used for an oblate spheroid
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and the negative sign for the prolate case, where the eccentricity is given in terms of the

ellipsoid major and minor radii R+ and R− as ε2 =
(
R2

+ − R2
−
)
/R2

+.[13] The different

forms of ∆i give the polarization shift of the WGM frequencies.

2.4 Fiber Modes

The fields of fiber modes are calculated by solving the wave equation in cylindri-

cal coordinates.[52] The direction of propagation is taken to be the z-direction. The wave

equation in the longitudinal direction is

(∇2 + k2
)⎛⎝ Ez

Hz

⎞
⎠ = 0, (2.24)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (2.25)

Assuming that the waves are harmonic, the wave equation in the longitudinal direction is

now

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+
(
k2 − β2

))⎛⎝ Ez

Hz

⎞
⎠ = 0. (2.26)

The solutions are separable and take the form⎛
⎝ Ez

Hz

⎞
⎠ = ψ(r)e±ilθ, l = 0, 1, 2, ..., (2.27)

so that the wave equation is

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

(
k2 − β2 − l2

r2

)
ψ = 0, (2.28)

which is the Bessel differential equation. For the modes to be confined and finite, the

solutions take the form
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ψ(r) =

⎧⎨
⎩ cJl(hr), k2 − β2 > 0,

cKl(qr), k2 − β2 < 0,
(2.29)

where

h2 = k2 − β2,

q2 = β2 − k2.

Here, h and q are the magnitudes of the vectors h = k − β and q = β − k. Thus, they

indicate the deviations of the wave vectors from the propagation vector.

The fibers used in this study have a circular step-index profile

n(r) =

⎧⎨
⎩ n1, for r < Rf ,

n2, for r > Rf ,
(2.30)

where Rf is the radius of the core. The exact solutions for the modes of such fibers are

given by (see Appendix A)

core (r < Rf ):

Er = − iβ
h2

(
AhJ ′

l (hr) +
iωµl

βr
BJl(hr)

)
cos(ωt+ lθ − βz), (2.31a)

Eθ =
β

h2

(
il

r
AJl(hr) − ωµ

β
BhJ ′

l(hr)

)
sin(ωt+ lθ − βz), (2.31b)

Ez = AJl(hr) cos(ωt+ lθ − βz), (2.31c)

Hr =
β

h2

(
BhJ ′

l (hr) −
iωε1l

βr
AJl(hr)

)
sin(ωt+ lθ − βz), (2.31d)

Hθ = − iβ
h2

(
il

r
BJl(hr) +

ωε1
β
AhJ ′

l(hr)

)
cos(ωt+ lθ − βz), (2.31e)

Hz = BJl(hr) cos(ωt+ lθ − βz), (2.31f)
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and cladding (r > Rf ):

Er =
iβ

q2

(
CqK ′

l(qr) +
iωµl

βr
DKl(qr)

)
cos(ωt+ lθ − βz), (2.32a)

Eθ = − β

q2

(
il

r
CKl(qr) − ωµ

β
DqK ′

l(qr)

)
sin(ωt+ lθ − βz), (2.32b)

Ez = CKl(qr) cos(ωt+ lθ − βz), (2.32c)

Hr = − β

q2

(
DqK ′

l(qr) −
iωε2l

βr
CKl(qr)

)
sin(ωt+ lθ − βz), (2.32d)

Hθ =
iβ

q2

(
il

r
DKl(qr) +

ωε2
β
CqK ′

l(qr)

)
cos(ωt+ lθ − βz), (2.32e)

Hz = DKl(qr) cos(ωt+ lθ − βz), (2.32f)

where the convention is used that the tangential components of the electric field are real

and the longitudinal components are imaginary. This requires A and C to be imaginary,

and B and D to be real. A can be chosen to be imaginary, and the other amplitudes are

calculated from A using the boundary conditions.

The propagation constants are found by applying the continuity conditions for the

fields at the core-cladding interface. In general, the modes are broken down into two

classes, HE and EH. These modes are neither TE nor TM because all of their field com-

ponents are nonzero. Thus, they are often referred to as hybrid modes. The characteristic

equations for these modes are:

EH modes:

Jl+1(hRf)

hRfJl(hRf )
=
n2

1 + n2
2

2n2
1

K ′
l(qRf)

qRfKl(qRf)
+

(
l

(hRf)2
− R

)
, (2.33)

and HE modes:

Jl−1(hRf )

hRfJl(hRf)
= −n

2
1 + n2

2

2n2
1

K ′
l(qRf)

qRfKl(qRf)
+

(
l

(hRf)2
−R

)
, (2.34)

where

R =

√√√√(n2
1 − n2

2

2n2
1

)2(
K ′

l(qRf )

qRfKl(qRf )

)2

+
l2

n2
1

(
β

ko

)2
(

1

h2R2
f

+
1

q2R2
f

)2

. (2.35)
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Because h and q are related to β, the propagation constants are found by finding the roots.

When l = 0, the EH and HE modes are reduced to TM and TE modes, respectively, and

their propagation constants are found from

TM modes,

J1(hRf )

hRfJ0(hRf )
= −n

2
2

n2
1

K1(qRf)

qRfK0(qRf)
, (2.36)

and TE modes

J1(hRf )

hRfJ0(hRf )
= − K1(qRf )

qRfK0(qRf )
. (2.37)

The number of roots to these characteristic equations (2.33–2.37) depends on how

large the fiber is compared to the wavelength. As the size of the fiber becomes small com-

pared to that of the wavelength, fewer modes are able to satisfy the boundary conditions.

Another way of saying this is that there are fewer ways that the light can be arranged to fit in

the fiber. The HE11 mode, which is characterized by a single maximum, is the lowest-order

mode supported by a fiber. No matter how small a fiber is, the HE11 mode is supported.

This does not mean that the guiding of the field is always strong. For very small fibers, a

large fraction of the mode is evanescent. Table 2.1 shows the arrangement of the propa-

gation constants for all the modes of a fiber of radius 1.8 µm and indices of refraction of

n1 = 1.44 and n2 = 1.00. These conditions are appropriate for a tapered fiber. The table

shows the modes for guided light of 1550 nm wavelength.

2.4.1 Linearly Polarized Modes

For ordinary fibers, the indices of refraction of the core and cladding are very similar.

Under this condition, the modes can be approximated to be linearly polarized. This means

that the directions of the transverse components of the fields do not change with position.

The fields of these modes are found to be
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TABLE 2.1. Fiber Mode Propagation Constants (Rf = 1.8µm, n1 = 1.44, n2 = 1.00,
λ = 1550 nm)

TE/TM HE1m HE2m EH1m HE3m EH2m HE4m EH3m HE5m β(106 m−1)

HE11 5.70852

TE01 5.52879

HE21 5.50387

TM01 5.48988

EH11 5.25528

HE31 5.22249

HE12 5.12826

EH21 4.92304

HE41 4.85606

TE02 4.75933

HE22 4.66893

TM02 4.65044

EH31 4.52000

HE51 4.38898

EH12 4.23848

HE32 4.14214

HE13 4.13354
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for the core (r < Rf ),

Ex = AJl(hr)e
ilθ exp[i(ωt− βz)], (2.38a)

Ey = 0, (2.38b)

Ez = i
h

β

A

2

[
Jl+1(hr)e

i(l+1)θ − Jl−1(hr)e
i(l−1)θ
]
exp[i(ωt− βz)], (2.38c)

Hx � 0, (2.38d)

Hy =
β

ωµ
AJl(hr)e

ilθ exp[i(ωt− βz)], (2.38e)

Hz =
h

ωµ

A

2

[
Jl+1(hr)e

i(l+1)θ + Jl−1(hr)e
i(l−1)θ
]
exp[i(ωt− βz)], (2.38f)

and for the cladding (r > Rf ),

Ex = BKl(qr)e
ilθ exp[i(ωt− βz)], (2.39a)

Ey = 0, (2.39b)

Ez = i
q

β

B

2

[
Kl+1(qr)e

i(l+1)θ +Kl−1(qr)e
i(l−1)θ
]
exp[i(ωt− βz)], (2.39c)

Hx � 0, (2.39d)

Hy =
β

ωµ
BKl(qr)e

ilθ exp[i(ωt− βz)], (2.39e)

Hz =
q

ωµ

B

2

[
Kl+1(qr)e

i(l+1)θ −Kl−1(qr)e
i(l−1)θ
]
exp[i(ωt− βz)]. (2.39f)

The characteristic equation used to calculate the propagation constants is

h
Jl+1(hRf )

Jl(hRf )
= q

Kl+1(qRf)

Kl(qRf)
. (2.40)

The lowest-order linearly polarized (LPlm) mode is the LP01 mode. The next higher-order

mode in this family is the LP02 mode. If the difference between the core and cladding

indices cannot be considered negligible, the LP01 mode must be expressed by the HE11

mode and the LP02 mode by the HE12 mode. As is discussed in later chapters, the HE11 and

HE12 modes are important to understand. The following section describes these and other

modes that are considered in this study.
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2.4.2 Lower-Order Modes

There are seven fiber modes that are considered in this study. The first is the HE11

mode. As was previously mentioned, this is the fundamental mode and is characterized

by a single maximum. This can be seen in Fig. 2.4. The 3-D plot is of the amplitude of

the transverse component of the electric field as a function of transverse coordinates. The

cross-section of the fiber is in the xy-plane. The abrupt color change from blue to red

indicates the surface of the fiber. Notice that for x = 0 the electric field is continuous at

the surface and for y = 0 the electric field is discontinuous at the surface. This is because

of the orientation of the field. In the orientation shown here, the electric field is parallel

to the surface at x = 0. The boundary conditions require that the fields be continuous

when the field is parallel to the surface. The field is perpendicular to the surface at y = 0.

The boundary conditions require that the fields undergo a step change when the field is

perpendicular to a change in permittivity. This is given by the relation

E⊥
1 n

2
1 = E⊥

2 n
2
2. (2.41)

This means that the amplitude of the field is (1.44)2 times larger on the outside of the

surface than on the inside. Another effect of the transverse component of the field being

perpendicular to the surface is that the longitudinal component becomes nonzero. The lon-

gitudinal component of the field is shown in Fig. 2.5. Again, the color change indicates

the surface of the fiber. In this figure, the longitudinal component of the field is zero at

the surface where the transverse component in Fig. 2.4 is continuous, and the longitudinal

component is nonzero at the surface where the transverse component in Fig. 2.4 is dis-

continuous. The polarization of the transverse component of the electric field is shown in

Fig. 2.6, where the arrows point in the direction of the electric field and the lengths of the

arrows indicate the magnitude of the field. This plot shows that the mode is nearly linearly

polarized. For the size fiber shown here, only small distortions are seen. For smaller fibers,

the distortions become more pronounced.

The next mode is the HE12 mode. This is the next higher-order mode in the same

family as the HE11 mode and is characterized by a maximum at the center of the fiber

surrounded by a minimum ring before reaching the surface. Whereas the HE11 mode would
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be seen as a single bright spot when viewed from a perspective perpendicular to the fiber’s

cross-section, the HE12 mode would appear as a bright spot surrounded by a ring. The

transverse and longitudinal components of its fields are shown in Fig. 2.7 and Fig. 2.8,

respectively. The polarization of the transverse component of the field is shown in Fig. 2.9.

In this figure, near the surface of the fiber, the field is close to being linearly polarized but

not as close as in the case of the HE11 mode.

In addition to the HE11 and HE12 modes, modes that have propagation constants

between the HE11 and HE12 modes are also considered in this study. Table 2.1 indicates

the modes of interest are the TE01, HE21, TM01, EH11, and HE31 modes. The vector plots

of the transverse components of their fields are shown in Figs. 2.10–2.14. There are several

points worth noting about the respective modes in these figures. From Table 2.1, it is seen

that the propagation constants of the TE01, HE21, and TM01 modes are very close. For

fibers that satisfy the LP-approximation, the superposition of these modes forms the LP11

mode. The plots of the HEl1 modes demonstrate the effect of changing the mode index l.

The field lines are divided into sections of π/l for l > 1. The EH11 mode has two dark spots

corresponding to the two locations around which the fields circulate. The TM01 mode is the

only mode that has a discontinuous transverse field at all points on the surface. The TE01

mode is unique among these modes because its transverse field is continuous at every point

on the surface of the fiber. This means that all of its energy is in the transverse component

of the field. An effect of this is seen in Chapter 4.
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Figure 2.4. Fiber HE11 Mode Transverse Field Amplitude as a Function of Transverse
Coordinates (Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is
indicated by the color change.
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Figure 2.5. Fiber HE11 Mode Longitudinal Field Amplitude as a Function of Transverse
Coordinates (Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is
indicated by the color change.
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Figure 2.6. Fiber Cross-Section with HE11 Mode Tranverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.
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Figure 2.7. Fiber HE12 Mode Transverse Field Amplitude as a Function of Transverse
Coordinates (Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is
indicated by the color change.
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Figure 2.8. Fiber HE12 Mode Longitudinal Field Amplitude as a Function of Transverse
Coordinates (Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is
indicated by the color change.
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Figure 2.9. Fiber Cross-Section with HE12 Mode Transverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.
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Figure 2.10. Fiber Cross-Section with TE01 Mode Transverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.
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Figure 2.11. Fiber Cross-Section with HE21 Mode Transverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.
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Figure 2.12. Fiber Cross-Section with TM01 Mode Transverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.
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Figure 2.13. Fiber Cross-Section with EH11 Mode Transverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.
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Figure 2.14. Fiber Cross-Section with HE31 Mode Transverse Field Polarization
(Rf = 2.47µm, λ = 1550 nm). The surface of the fiber is indicated by
the circle.



CHAPTER 3

MODE COUPLING

There are conditions in which electromagnetic modes may couple. One is when a

single isolated waveguide contains a perturbation, such as an imperfection in the waveguide

construction. The presence of the perturbation prevents any single mode of the unperturbed

waveguide from being a solution of the perturbed waveguide by itself. The solution is a

superposition of the unperturbed modes. The tapered fiber is another example of this.

The section of the fiber that has a varying radius is a perturbation of the cylindrical fiber.

The superposition of the cylindrical fiber modes is a solution of the non-cylindrical fiber.

Another situation in which modes couple is when separate waveguides are in close enough

proximity so that the evanescent portions of their modes penetrate the opposite waveguide.

A common example of this is cross-talk between fibers in a fiber-optic cable. In the system

studied here, it is the means by which light is coupled into the microsphere from the fiber

and vice versa. In both types of coupling described here, the perturbations result in energy

being transfered between unperturbed modes. This chapter describes coupled-mode theory

and applies it to both fiber-microsphere coupling and to coupling between modes in the

tapered fiber. This chapter also shows that the two factors that determine the amount of

coupling are the amount of spatial overlap of the modes and the phase-matching between

them. For cases where the coupling cannot be considered a small perturbation, other means

of analysis are required. Such methods are not presented here, but an example is the vector-

modal solution method.[53]

3.1 Coupled-Mode Theory

Coupled-mode theory quantifies the coupling between modes by assuming the in-

teractions between the modes only result in small perturbations. By this it is meant that

32
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although energy is transfered between the two modes, the shapes of the modes are not

being significantly distorted by the interaction. The basis of coupled-mode theory is the

application of the reciprocity relation to the system of interest.[54–56] The reciprocity rela-

tion for two modes is derived in Appendix B. In integral form, over an infinitesimal range

∆z in the direction of propagation, it is

∂

∂z

∫∫ (
E1 × H∗

2 + E∗
2 × H1

) · ẑ dx dy

= iω

∫∫
(ε1(x, y) − ε2(x, y))E1 · E∗

2 dx dy,

(3.1)

where E1 and H1 are the electric and magnetic fields of one mode, and E2 and H2 are the

fields of the second mode, ω is the angular frequency of the light, and ε1(x, y) and ε2(x, y)

are the permittivity profiles of the two modes. Physically, the reciprocity relation means

that the net power flow between two lossless waveguides is symmetrical.

For the case of two parallel waveguides, a and b, each supporting a single mode, the

perturbation to the mode of waveguide a can be determined. The permittivity profiles are

given as

ε1(x, y) = ε(x, y), (3.2a)

ε2(x, y) = εa(x, y), (3.2b)

where the permittivity profiles εa(x, y) and ε(x, y) are for waveguide a and the composite

system, respectively. The transverse fields of the coupled system are taken to be a linear

combination of the transverse fields of the individual waveguides as follows:

Et
1 = a(z) Et

a(x, y) + b(z) Et
b(x, y), (3.3a)

Ht
1 = a(z) Ht

a(x, y) + b(z) Ht
b(x, y), (3.3b)

where a(z) and b(z) are the amplitudes of the modes in waveguides a and b as functions

the longitudinal coordinate. The longitudinal fields are similarly expressed as a linear com-

bination of the longitudinal components of the fields

Ez
1 = a(z)

εa
ε

Ez
a(x, y) + b(z)

εb
ε

Ez
b(x, y), (3.4a)

Hz
1 = a(z) Hz

a(x, y) + b(z) Hz
b(x, y). (3.4b)
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The fields of the perturbed waveguide are expressed in the usual amplitude and phase rela-

tion as follows:

E2 = Ea(x, y)e
−iβaz, (3.5a)

H2 = Ha(x, y)e
−iβaz. (3.5b)

The fields and permittivity profiles are substituted into Eq. (3.1). The previous procedure

is repeated with waveguide b being perturbed. In this case, the permittivity profiles are

ε1(x, y) = ε(x, y), (3.6a)

ε2(x, y) = εb(x, y). (3.6b)

Here, εb(x, y) is the permittivity profile of waveguide b. The transverse and longitudinal

fields of the coupled system are the same as those with waveguide a being perturbed (see

Eqs. (3.3) and (3.4)). The fields of the perturbed waveguide are given as

E2 = Eb(x, y)e
−iβbz, (3.7a)

H2 = Hb(x, y)e
−iβbz. (3.7b)

The result of substituting the fields into the reciprocity relation, first with waveguide a

being perturbed, and second with waveguide b being perturbed, is that, at any z,

κba(z) − κab(z) =
1

2
(Cab(z) + Cba(z))(βb − βa), (3.8)

where

κab(z) =
ω

4

∞∫∫
−∞

(ε(x, y) − εb(x, y))
(

Et
b · Et

a
∗
+
εa
ε
Ez

bE
z
a
∗
)

dx dy, (3.9a)

Cab(z) =
1

2

∞∫∫
−∞

(
Et

2 × Ht
1
∗) · ẑ dx dy. (3.9b)

κab and Cab are known as coupling coefficients, as they quantify the amount of coupling

between two normalized modes. Coefficients κba and Cba are calculated using Eqs. (3.9a)

and (3.9b) by swapping the subscripts. Coefficient κ is of primary interest here because it

determines the probability that a photon tunnels from one mode to another. Coefficient C

represents the energy associated with the overlap of the two modes. An important fact is

that κab �= κba if βa �= βb. This is because modes with higher propagation constants have

smaller evanescent fractions than modes with lower propagation constants.
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3.1.1 Coupled-Mode Equations

Without coupling, the amplitudes of the fields of two modes, in waveguides a and b,

can be described by the differential equations

dEa(z)

dz
= −iβaEa(z), (3.10a)

dEb(z)

dz
= −iβbEb(z). (3.10b)

The solutions to these equations are

Ea(z) = Ea(0)e−i(βaz+φa), (3.11a)

Eb(z) = Eb(0)e−i(βbz+φb). (3.11b)

With coupling, the modal amplitudes are

dEa(z)

dz
= −iβaEa(z) + iκab(z)Eb(z), (3.12a)

dEb(z)

dz
= −iβbEb(z) + iκba(z)Ea(z). (3.12b)

These equations are known as the coupled-mode equations for two parallel waveguides.

3.1.2 Energy Conservation

A common misconception in mode-coupling theory is that for energy to be conserved

the coupling coefficients must be equal, or κab = κba. However, according to coupled-mode

theory, these coefficients are not equal. It is roughly explained that, for unequal coupling

coefficients, energy is radiated during coupling to unbound (or radiation) modes. This is

not the case. The source of the confusion lies in the method used to calculate the energy.

In general, the Poynting vector S is used to calculate the energy flow of an electromagnetic

wave,

S =
1

2
E × H∗. (3.13)

For two modes that are not coupled, the total energy flow becomes

Stot = S1 + S2

=
1

2
(E1 × H∗

1 + E2 × H∗
2), (3.14)
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where S1 and S2 represent the energy flow of each mode. The power as a function of z can

be written as

P (z) = |a(z)|2 + |b(z)|2, (3.15)

where a(z) and b(z) are the same as in Eqs. (3.3) and (3.4). When the power is calculated

as such, the two coupling coefficients must be equal. This is not correct when calculating

power in a coupled system. For the coupled system the Poynting vector is

Stot =
1

2
Etot × H∗

tot

=
1

2
(E1 + E2) × (H∗

1 + H∗
2)

=
1

2
[(E1 × H∗

1) + (E1 × H∗
2) + (E2 × H∗

1) + (E2 × H∗
2)]. (3.16)

In this case, the power as a function of z is written as

P (z) = |a(z)|2 + |b(z)|2 + (Cab(z) + Cba(z))�[a(z)b∗(z)], (3.17)

where, again, a(z) and b(z) are the same as in Eqs. (3.3) and (3.4). Only the real part of

a(z)b∗(z) represents energy flow. The imaginary part represents stored energy. Radiation

losses are ignored here because they are negligible in this study. The condition that must

be satisfied for the energy to be constant is

κba(z) − κab(z) =
1

2
(Cab(z) + Cba(z))(βb − βa), (3.18)

which is already satisfied with coupled-mode theory. A quantum mechanical analog is

useful here. A diatomic molecule that has a shared electron between the two atoms exhibits

the same behavior as in coupled-mode theory. The atom that attracts the electron more

strongly has the electron more often than the atom that attracts the electron less strongly.

This is intuitively correct and is a result of the overlap integrals of the wavefunctions being

unequal, just as they are in the case of two non-identical waveguides.

3.2 Fiber-Microsphere System

Calculations for the fiber-microsphere system involve the calculation of κsf , the cou-

pling into the microsphere mode from the fiber mode, and κfs, the coupling into the fiber
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mode from the microsphere mode by use of the overlap integrals. Figure 3.1 shows the

microsphere and fiber modes when the fiber is placed in contact with the microsphere.

The utility of the coupling coefficients is great when taking into account a weak coupling

condition.

3.2.1 Weak Coupling

Assuming that one microsphere mode is interacting with one fiber mode, the coupled-

mode equations for the fiber-microsphere system are given by

dEs(z)

dz
= −iβsEs(z) + iκsf (z)Ef (z), (3.19a)

dEf (z)

dz
= −iβfEf(z) + iκfs(z)Es(z), (3.19b)

where the subscripts “s” and “f” refer to the microsphere and fiber, respectively. Using

the coupled-mode equations in this form requires the numerical integration of these simul-

taneous differential equations to understand how power transfers between the modes. The

problem with this is that it takes many passes across the interaction region before the mi-

crosphere’s field amplitude builds up and the system comes to equilibrium. For a typical

desktop computer analysis, the amount of time the calculations take makes this method

prohibitive for general use. The method does, however, allow the z-dependences of the

fields to be known. An example is shown in Fig. 3.2. The plots show the z-dependences

of the real parts of the fields of the microsphere and fiber modes after equilibrium has

been reached. The inflection in the center of the fiber field plot indicates the phase shift

associated with coupling when there is no intracavity loss.

Assuming weak coupling, the coupled-mode equations can be approximated as

dEs(z)

dz
∼= −iβsEs(z) + iκsf (z)|Ef(−∞)|e−i(βf z−φf ), (3.20a)

dEf (z)

dz
∼= −iβfEf(z) + iκfs(z)|Es(−∞)|e−i(βsz−φs). (3.20b)
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librium has been reached.

where φf and φs are the initial phase shifts of the fiber and microsphere modes, respectively.

The solutions are

Es(z) = |Es(−∞)|e−i(βsz−φs) + i|Ef (−∞)|e−i(βsz−φs)

z∫
−∞

κsf(z
′)e−i[(βf−βs)z′−φf ] dz′,

(3.21a)

Ef (z) = |Ef(−∞)|e−i(βf z−φf ) + i|Es(−∞)|e−i(βfz−φf )

z∫
−∞

κfs(z
′)e−i[(βs−βf )z′−φs] dz′.

(3.21b)
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The behavior of the modal fields after many passes is demonstrated by choosing |Ef(−∞)|
= 1 and φf = 0. After many passes |Es(−∞)| ≈ 100 and φs = π/2. This can be seen

in Fig. 3.2. The difference in the phases is a result of the imaginary number preceding the

coupling coefficients in the coupled-mode equations. As a comparison, it is evident that

this is a little different from the behavior in the single-mirror ring-cavity analogy. In the

mirror cavity analogy, the phase of the reflected light is shifted by π and the transmitted

light maintains its original phase. With the coupled-mode equations, there is no phase

change in the “reflected” light, but there is a net phase shift of π for the transmitted light

(π/2 as the light enters the microsphere and π/2 as the light exits the microsphere). The

field in the fiber past the coupling region can be approximated by

Ef(zfinal) = |Ef(−∞)| − |Es(−∞)|κ̃fs,

−|Ef(−∞)| = |Ef(−∞)| − |Es(−∞)|κ̃fs,

−2|Ef(−∞)| = −|Es(−∞)|κ̃fs,

or

|Es(−∞)| =
2|Ef(−∞)|

κ̃fs
, (3.22)

where

κ̃fs =

∞∫
−∞

κfs(z)e
i(βs−βf )z dz. (3.23)

This is similar to what is obtained using a ring-cavity model with unequal transmission

coefficients (see Appendix C). The difference comes from the fact that, in the coupling

region, light can tunnel from one waveguide to another and then back again. In an ordinary

ring cavity, light does not return through a mirror once it has passed through it.

Equation (3.23) shows that the strength of the coupling is a combination of the

amount of overlap and the amount of phase-matching between the modes. The relation

between the fields implies that the coupling coefficient can be used to calculate the external

quality factor (Q) of the microsphere when coupled to a fiber mode. The transmission from

the microsphere to the fiber is just Tfs = |κ̃fs|2. This means that the quality factor due to
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coupling is

Q =
4π2Rsneff

λ0|κ̃fs|2

=
2mπ

|κ̃fs|2 , (3.24)

where m is the third index of the microsphere mode.

3.2.2 Fiber-to-Microsphere Coupling (FMC)

The coupling strength from the fiber into the microsphere is found from the overlap

integral

κsf (z) =
ω

4

∞∫∫
−∞

(ε(x, y) − εf (x, y))

(
Et

f · Et
s
∗
+
εs(x, y)

ε(x, y)
Ez

fE
z
s
∗
)

dx dy, (3.25)

where ε(x, y) is the permittivity profile for the composite system, εf(x, y) is the permittiv-

ity profile for the fiber, εs(x, y) is the permittivity profile for the microsphere, and Et
f(s) and

Ez
f(s) are the transverse and longitudinal components of the electric field of the fiber (mi-

crosphere). In this case, the permittivity profiles are of the step-index kind and the coupling

coefficient reduces to

κsf =
ωεo
4

(
n2

s − n2
o

) ∫∫
As

(
Et

f · Et
s
∗
+ Ez

fE
z
s
∗) dx dy. (3.26)

Because the integration is over the interior of the microsphere, the integration over the

transverse slice is represented in polar coordinates,

κsf =
ωεo
4

(
n2

s − n2
o

) ∫∫
As

(
Et

f · Et
s
∗
+ Eφ

fE
φ
s

∗)
r dr dθ. (3.27)

Accounting for both phase mismatch and field overlap the strength is

κ̃sf =

π∫
−π

κsf (φ)e−i∆βrφ r dφ, (3.28)

where ∆β = βs − βf . The total coupling strength, found by combining the integrals in

Eqs. (3.27) and (3.28), is

κ̃sf =
ωεo
4

(
n2

s − n2
o

) ∫∫∫
Vs

(
Et

f · Et
s
∗
+ Ez

fE
z
s
∗) cos (mφ− rβf sinφ) r2 dr dθ dφ.

(3.29)



42

Note that the real part of the interference term is sufficient for calculating the effects of

phase mismatch.

Because the integration is performed over the volume of the microsphere, the fiber

fields must be expressed in the microspheres coordinate system. The axes of the fiber

coordinate system are oriented so that the fiber’s y-axis points toward the microsphere and

its x-axis is parallel to the microsphere’s θ̂-vector at the nearest point. The transverse and

longitudinal components of the fiber become

Et
f = r̂
(
Ex

f sin θ − Ey
f cos θ cosφ+ Ez

f sin φ
)

+ θ̂
(
Ex

f cos θ + Ey
f sin θ cosφ

)
, (3.30a)

Eφ
f = φ̂
(
Ey

f cos θ sinφ+ Ez
f cosφ
)
. (3.30b)

The terms of the integrand may now be expressed as:

•Microsphere TE Mode

Et
f · Et

s
∗

= Eθ
s

∗ (
Ex

f cos θ + Ey
f sin θ cos φ

)
, (3.31a)

Ez
fE

z
s
∗ = 0. (3.31b)

•Microsphere TM Mode

Et
f · Et

s
∗

= Er
s
∗ (Ex

f sin θ − Ey
f cos θ cosφ+ Ez

f sin φ
)
, (3.32a)

Ez
fE

z
s
∗ = Eφ

s

∗ (
Ey

f cos θ sinφ+ Ez
f cosφ
)
. (3.32b)

3.2.3 Microsphere-to-Fiber Coupling (MFC)

The range of the overlap integral when coupling from the microsphere to the fiber is

taken over the fiber. The coupling coefficient is calculated by evaluating

κ̃fs =
ωεo
4

(
n2

f − n2
o

) ∫∫∫
Vf

(
Et

s · Et
f
∗
+ Ez

sE
z
f
∗) cos
[
m tan−1

(z
r

)
− βfz
]
r dr dθ dz.

(3.33)

Notice that Eq. (3.33) is in cylindrical coordinates rather than spherical coordinates that

are used when going from the fiber to the microsphere. The transverse and longitudinal
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components of the microsphere fields as expressed in the fiber coordinate system are

Et
s = x̂
(
Er2

s sin θ2 + Eθ2
s cos θ2

)
+ ŷ
(−Er2

s cos θ2 cosφ+ Eθ2
s sin θ2 cos φ+ Eφ

s sin φ
)
, (3.34a)

Ez
s = ẑ
(
Eφ

s cosφ
)
, (3.34b)

where r2 = r2(r, θ, z) and θ2 = θ2(r, θ) are the microsphere coordinates as functions of the

fiber coordinates.

•TE Mode

Et
s · Et

f
∗

= Eθ2
s

(
Ex

f
∗ cos θ2 + Ey

f
∗ sin θ2 cosφ

)
, (3.35a)

Ez
sE

z
f
∗ = 0. (3.35b)

•TM Mode

Et
s · Et

f
∗

= Er2
s E

x
f
∗ sin θ2 +

(−Er2
s cos θ2 cos φ+ Eφ

s sin φ
)
Ey

f
∗, (3.36a)

Ez
sE

z
f
∗ = Eφ

sE
z
f
∗ cos φ. (3.36b)

3.3 Tapered Fiber

As was mentioned in the introduction to this chapter, tapering of a fiber can be treated

as a perturbation to the cylindrical case. In the untapered portion of the fiber, the fiber is

a single-mode step-index fiber. This is because of the small size of the core relative to

the transmission wavelength and because of the low index contrast between the core and

the cladding. In this portion of the fiber, the HE11 mode can be approximated as the LP01

mode. In the portion of the fiber where the tapering is occurring, more of the mode extends

into the cladding of the fiber. Eventually, where the core is very small, the cladding takes

over the role of the core and the air (or liquid) outside of the fiber assumes the role of

the cladding. In the non-cylindrical section, or taper transition region, a superposition

of modes is required to satisfy the Maxwell equations. This means that power can transfer

from the HE11 mode to other modes. According to coupled-mode theory, the amount of this

transfer is dependent on the overlap between the modes and the phase-matching between
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them. Due to symmetry, the only modes that have non-zero overlap with the HE11 mode

are those in the same family – the HE1m family. If the taper transition is gentle enough,

the phase-matching effects result in the HE12 mode being the only mode that can have a

non-negligible amount of coupling.

A taper transition is considered adiabatic if its shape permits only a negligible amount

of coupling to the HE12 mode. Whether or not a taper transition is adiabatic is important

because of the effects in the fiber-microsphere system. If two fiber modes couple into the

microsphere, the system has many more variables and becomes more difficult to analyze.

However, it has been found that under certain conditions coupling from two fiber modes can

increase the effective absorption length in a sensing experiment, making it much better for

sensing low concentrations of a substance.[57] These considerations mean that it is important

to know the conditions for taper transition adiabicity.

A simple model is the length-scale criterion for taper transition adiabicity. [58,59] In

this model, a local taper-length scale is defined to be the base of the right triangle that has

the radius of the fiber as the opposite side. The local taper transition angle is given by

Ω(z) = tan−1

[
dr

dz

]
. (3.37)

The local taper length can be approximated as

zt ≈ r(z)

Ω(z)
, (3.38)

because the taper transition angle is always small. For a taper transition to be adiabatic,

the local taper length must be much greater than the local beat length (such as in acoustical

waves), or zt � zb, where the local beat length is given by

zb =
2π

β11(r) − β12(r)
, (3.39)

where β11 and β12 are the propagation constants of the HE11 and HE12 modes. The upper

limit of the taper transition angle can be calculated by setting taper length equal to the beat

length. By combining Eqs. (3.37)–(3.39), this is expressed by the differential equation

dr

dz
= tan

[
r(β11(r) − β12(r))

2π

]
. (3.40)



45

This can be solved numerically by fitting expressions for the propagation constants, which

are found in the methods discussed in Chapter 2. For the section of the fiber that has a

radius large enough to only core guide the HE11 mode, the angle of the taper transition can

be steep, but not arbitrarily so. Although the HE12 and other higher-order modes are cut off,

coupling to them is still possible. This is because they are actually radiation modes of the

fiber. These modes have propagation constants equal to the wavenumber of the cladding,

or

β12 = k0ncl, (3.41)

where ncl is the index of refraction of the cladding. As the fiber radius decreases, it reaches

a section where the propagation constant of the HE11 mode in the core is close to when

guided by the cladding. At this point, the angle of the taper transition must be decreased.

This is because the HE11 mode undergoes the transition from being core guided to cladding

guided. At this portion of the taper transition, the cladding can easily guide many modes,

as its diameter is large compared to the wavelength of the light. Immediately after the tran-

sition, the taper transition angle must be very small because the propagation constants of

the fiber modes are very close. As the fiber radius is further decreased, the angle of the

taper transition may again be increased. This is because the higher-order modes’ propaga-

tion constants decrease more than the propagation constant for the fundamental mode as

the fiber radius is decreased. As the size of the fiber is reduced even further, the HE12 mode

is cut off. This means that it must again be treated as a radiation mode. An example of

the taper transition shape for the region where the cladding guides both the HE11 and the

HE12 modes is shown in Fig. 3.3. The figure shows the shape of the taper transition when

zt = zb. For the taper transition to be truly adiabatic, the length needs to be multiplied

by several orders of magnitude. This is useful because in an experiment the length of the

taper transition needs to be minimized. This method can be used to provide such a taper

transition.

This chapter has discussed coupled-mode theory and how it applies to coupling be-

tween microsphere and fiber modes, and also how it applies to coupling between fiber
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Figure 3.3. Taper Transition Profile as a Function of Longitudinal Distance. The profile
has been found for the region where the cladding guides both the HE11 and
the HE12 modes. In this case, the taper length is equal to the beat length.

modes within a tapered fiber. The next chapter uses this development to calculate the op-

timal fiber radius of a microsphere-fiber system, to calculate the WGM spectrum of the

system, and to study the lasing of a coated microsphere.



CHAPTER 4

APPLICATIONS

Coupled-mode theory as it pertains to the fiber-microsphere system was presented

in Chapter 3. Chapter 4 uses the coupled-mode theory to explain optimal and imperfect

conditions for this system. The amount of coupling between fiber and microsphere modes

is strongly dependent on the sizes of the fiber and sphere. The first section of this chapter

presents calculations of the optimal taper size for a microsphere of given size. This is

followed by calculations of whispering-gallery mode spectra with imperfect alignment of

the fiber and microsphere. The chapter concludes with a laser model that incorporates the

WGMs and some unusual effects of their presence.

4.1 Optimal Fiber Radius

The optimal taper radius is that which maximizes coupling from the fiber HE11 mode

to the microsphere mode while minimizing coupling of the microsphere mode to the higher-

order fiber modes. As was discussed in Sec. 3.3, higher-order fiber modes not in the HE1m

family do not couple to the HE11 mode in the taper transitions. This means that power

in these modes is lost at the second end of the bitaper. Figure 4.1 shows the approximate

activation of modes along the entire system. Before the first taper transition, all of the light

is in the HE11 mode because the untapered portion of the fiber is only single mode. After

the first taper transition, the power is divided between the HE11 and HE12 modes. Both of

these modes couple into the microsphere mode. Light in the microsphere’s WGM can then

couple into all of the modes supported by the fiber taper. Shown in Fig. 4.1 are the modes

that have propagation constants between the HE11 and HE12 modes. In order of descending

propagation constant, the modes in this second portion of the fiber taper are: HE11, TE01,

HE21, TM01, EH11, HE31, and HE12. These are the modes that are discussed in Sec. 2.4.2.

47
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Figure 4.1. Taper-Coupled Microsphere

The optimal taper radius is determined by calculating the coupling coefficient be-

tween the fiber and microsphere. Under conditions defined below for FMC, the coupling

coefficients for the HE11 and HE12 fiber modes are calculated with respect to coupling to

either the TE or TM WGMs of the microsphere as a function of the radius of the fiber

taper. Any maxima that develop in the curves reflect optimal coupling conditions for a

given radius of the microsphere. These optimal coupling conditions can be explained in

terms of the two factors identified in Chapter 3: the amount of overlap of the respective

fiber-microsphere modes and the phase matching between them.

Figure 4.2 shows the dependence of FMC on the radius of the taper with respect

to both the HE11 and HE12 fiber modes. The conditions of the numerical calculations are

chosen such that the fiber and microsphere are placed in contact with each other and that the

microsphere size remains fixed. In Fig. 4.2, the most important feature is reflected by the

coupling of the fiber HE11 mode to the TE or TM fundamental modes of the microsphere.

Here the strongest couplings occur at maxima where the fiber radius is smaller than the

radius for perfect phase matching between modes (indicated by lines A and B). The reason

for the increase in the coupling strength for smaller radii than for the phase-matching point

is seen directly from Eq. (3.29). As the taper radius is decreased (from the point of phase



49

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|κ
|2 sf

 (
10

-4
)

Fiber Radius (µm)

B

A

HE11

HE12

TM
TE
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for HE12 coupling. The vertical green lines A and B indicate where the fiber
HE11 mode is perfectly phase-matched to the fundamental microsphere TM
and TE modes, respectively.

matching), the spatial overlap of the fields is increased. At the same time, the increasing

phase mismatch causes destructive interference between the two modes. The increasing

effect of the spatial overlap is stronger than the decreasing effect of the phase mismatch

until the radius that maximizes the coupling coefficient is reached. For radii below this, the

decreasing effect of the phase mismatch is stronger than the increasing effect of the spatial

overlap.

The HE11 and HE12 modes have their strongest coupling at different taper radii. Thus

by changing the taper radius, the coupling can be selected to identify either of these modes.

Similarly, at a certain radius of the taper, the coupling can be chosen to incorporate a

superposition of the two modes. See, for example, a radius in the range of 3.0 – 3.5 µm in

Fig. 4.2. Both the HE11 mode and the HE12 mode couple less strongly to the microsphere



50

TM modes than to the microsphere TE modes. This can be explained by the nature of the

microsphere TE and TM modes themselves. When coupling to the TE modes, the electric

fields in the coupling region are parallel to the surfaces of the microsphere and fiber. When

coupling to the TM modes, the transverse electric fields are perpendicular to the surfaces

and are discontinuous. This is accompanied by nonzero longitudinal field components.

Figure 4.2 indicates that the contributions of the transverse and longitudinal components

of the fields in Eq. (3.29) are opposing for both the HE11 and the HE12 modes because the

coupling is stronger to the TE mode than to the TM mode.

In the previous discussion, only the fiber-to-microsphere mode coupling is examined.

It is appropriate, however, to consider also the microsphere-to-fiber light coupling. In the

latter process, there are more taper modes available for the microsphere WGMs to excite.

The coupling strengths are calculated for all modes with propagation constants between

that of the HE11 and HE12 modes as functions of the radius as in FMC; but, in this case,

the range of integration of the overlap integral is over the volume of the fiber, as was

shown in Chapter 3 (see Eq. (3.33)). For comparison, the fundamental microsphere TE and

TM modes are selected to be individually coupled to the taper modes (see Figs. 4.3 and

4.4, respectively). In both cases, the strongest coupling strength for a small taper radius

of ∼ 1.5 µm is the HE11 mode. Close behind are the next maximal coupling coefficients

corresponding to the TE01 (in Fig. 4.3) and the TM01 (in Fig. 4.4) with the HE21 taper mode

in third place for radii in the range of ∼ 2.6 – 2.7 µm. As was mentioned in Sec. 2.4.2,

a superposition of the TE01, HE21, and TM01 fiber modes forms the LP11 mode in the

LP-approximation. The reason that coupling from the TE microsphere modes to the TE01

mode is noticeably stronger than to the HE21 mode is that all of the TE01’s power is in

the transverse direction. The strength of the coupling from the TM microsphere mode to

the HE21 and TM01 modes is almost identical because both of these fiber modes have both

transverse and longitudinal components. Note in Figs. 4.3 and 4.4 that if a radius is selected

at ∼ 2.5 µm (the HE11 phase-matched point indicated by lines A and B in Fig. 4.2), the

strength of the coupling to the fiber TE01, HE21, and TM01 modes is very close to that of

the HE11 mode.
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Figure 4.3. Coupling from Fundamental Microsphere TE mode to Higher-Order Fiber
Modes

With MFC, coupling with the higher-order modes (HE12, HE31, and EH11) of the

taper occurs at larger radii (3.0 µm – 4.0 µm) and is sequentially different in strength with

respect to the TE and TM modes of the microsphere. In the case of the TE mode coupling

(Fig. 4.3), the third highest coupling strength corresponds to the EH11 taper mode followed

by the HE12 and the HE31. There is no unexpected behavior in the functional development

of these higher-order modes as their coupling strengths are calculated as functions of the

increase in radius – i.e., for any given range of the radius, the sequence of behavior of the

relative coupling strengths stays consistent as the radius increases. There are interesting

differences in the case of the TM mode coupling to the higher-order fiber modes (Fig. 4.4).

First, note that the third highest coupling strength corresponds to the HE12 taper mode

followed by the HE31 and the EH11, a sequence that is completely different from TE mode

coupling (Fig. 4.3). Second, not only is the order of the coupling strength between these

modes different from the TE mode coupling, but there is a functional crossing of coupling
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Figure 4.4. Coupling from Fundamental Microsphere TM Mode to Higher-Order Fiber
Modes.

strengths for these three modes within the radius range of ∼ 2.5 – 3.2 µm. Because the

range of the coupling strengths is small and this is MFC, it is not clear that this crossing

behavior is physically determinable.

The dependence of the optimal taper radius on the microsphere size for FMC of

the HE11 taper mode is shown in Figs. 4.5 and 4.6. For a given wavelength, the ratio

of the optimal radius to the phase-matched radius is weakly dependent on the size of the

microsphere. The greatest ratio occurs for a microsphere radius of ∼ 100 µm for all four

wavelengths, ranging from 800 – 1900 nm, with the largest ratio reflected in the largest

wavelength of 1900 nm. (see Fig. 4.5 for HE11 FMC). Similarly, in Fig. 4.6, the ratio of

the peak coupling strength to the phase-matched coupling strength is calculated and, as in

the previous case, is found to be weakly dependent on the microsphere size. For all four

wavelengths, the coupling strength is roughly doubled by using the optimal taper radius

rather than the phase-matched radius. Similar results are found also when optimizing for
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the HE12 taper mode. This is shown in Figs. 4.7 and 4.8. The only difference is that in

the latter case of HE12 coupling the peak–to–phase-matched radius ratio is a little higher

than for HE11 coupling while the peak–to–phase-matched coupling coefficient ratio is a

little smaller. The peak–to–phase-matched radius ratio and the peak–to–phase-matched

coupling coefficient ratios are useful because the phase-matched radius is easy to calculate.

Once the phase-matched radius and the corresponding coupling coefficient are calculated,

the optimal fiber radius and its coupling coefficient can be quickly determined.

The dependence of the coupling on microsphere size is more fully understood when a

comparison of the actual coupling coefficients is considered in addition to only considering

the ratios. The dependence of FMC of the HE11 mode is shown in Fig. 4.9. The figure

shows that as the microsphere size is decreased the optimal taper radius decreases while the

coupling strength increases. The optimal taper radius decreases because the propagation

constant of the microsphere decreases with smaller sizes. The taper size must then be

decreased for better phase matching. The coupling coefficients increase with decreasing

microsphere size because the spatial overlap of the fields is increased. The same trends are

found for HE12 MFC, as is shown in Fig. 4.10.

The dependence of the coupling strength on the wavelength is shown in Figs. 4.11

and 4.12 for FMC. These figures show that as the wavelength increases from 800 nm to

1900 nm the optimal taper radius increases as does the coupling strength. The coupling

strength increases because the evanescent portions of the modes increase. The optimal

taper radius increases because the taper size must be increased to maintain a small amount

of phase mismatch with the WGM. This is because increasing the wavelength causes a

larger decrease in the propagation constant for the fiber mode than that for the microsphere

mode, as the wavelength of the light is closer to the size of the fiber than to the size of the

microsphere.

The effects of immersing the entire fiber-microsphere system in a fluid other than air

are also interesting and are shown in Fig. 4.13. In this figure, the blue lines indicate the

coupling when the system is in air (nair = 1.00) and the red lines indicate the coupling when

the system in in a liquid (nliquid = 1.33). The figure shows that the optimal taper radius for

HE11 is only slightly changed by the immersion. The shift of the optimal taper radius for
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HE12 coupling is more noticeable, but still small. Also, notice for both the HE11 and HE12

modes that the coupling strengths are an order of magnitude larger for the immersed system

(vertical axes are scaled differently). This is a result of the modes having higher evanescent

fractions when the system is immersed. These results are important because they indicate

that a fiber-microsphere system that has been designed for gas sensing can be used for

liquid sensing as well.

The discussion of optimal taper radius is not complete without some remarks about

the polarization of the modes. In FMC, the orientation of the HE11 and HE12 fiber fields is

used to choose whether the coupling is to TE or TM microsphere modes. For coupling to

TE microsphere modes, the orientation is chosen such that the transverse fields are parallel

to the surfaces of the fiber and microsphere within the interaction region. For coupling to
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TM modes, the orientation is chosen so that the fields are perpendicular in the interaction

region. In MFC, the orientations are chosen in the same manner. However, coupling is

possible for modes whose orientations are in-between being perfectly perpendicular and

parallel to the surfaces in the interaction region. In fact, none of the modes can be oriented

completely as in either of these situations. This is because the modes of the taper are

not linearly polarized. Although the orientation of the fields can be used to cause the

coupling to be primarily to microsphere TE or TM modes, the orientation can never entirely

eliminate coupling to either of these families of modes. Calculations, not shown here,

indicate that at best the opposite polarization has coupling as low as about two and a half

orders of magnitude less than the primary polarization.

Coupled-mode theory indicates that FMC and MFC should be equal for cases where

the microsphere mode and taper mode are phase-matched. The fact that they are equal

in these calculations indicates consistency between the integration methods. Note that, at

the optimal taper radius, FMC (Fig. 4.2) is about 10% larger than MFC (Figs. 4.3 and 4.4)

because βs > βf when the fiber radius is less than the phase-matched radius (see Eq. (3.8)).

This means that light enters the microsphere more easily than in an ordinary ring cavity of

the same quality factor.

4.2 Whispering-Gallery Mode Spectra

The microsphere whispering-gallery mode spectra are calculated by numerically in-

tegrating the field overlap integral (Eq. (3.29)). However, in this case the fiber is offset

from the equatorial plane of the microsphere, as seen in Fig. 4.14, in order to account for

imperfect alignment in an experiment. In this configuration, non-zero overlap is possible

between the fiber mode and odd polar modes of the microsphere. This is in addition to the

even polar modes that are coupled to when the alignment is perfect. Also, the frequency

degeneracy of the polar modes is broken by including the eccentricity of the (oblate) mi-

crosphere. Converting Eq. (2.23) to wavelength results in

λ′ =

[
1

λ
− ε2

4πRsns
(m′ −m)

]−1

, (4.1)

where ε is the eccentricity, m = l, and λ′ and m′ are for the higher order polar modes.
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An example of the results of calculations using Eqs. (3.29) and (4.1) is shown in

Fig. 4.15, where the wavelengths are associated with the condition of misalignment of the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1549.7 1549.9 1550.1 1550.3 1550.5

|κ
|2 sf

 (
10

-4
)

λ (nm)

q=1
q=2
q=3

Figure 4.15. WGM TE Spectrum. (Rs = 300µm, Rf = 2.47µm, ε = 0.29, θoff = π/76).

taper modes with the WGMs of the equatorial plane. One free-spectral range of the mi-

crosphere is displayed. In this case, the fundamental taper mode has been phase matched

to the fundamental microsphere TE mode. The offset from the equatorial plane has been

chosen to be θoff = π/76. The different colors indicate modes of different radial order q.

Within each color grouping, eight modes are shown, with the polar-mode order increasing

from lower to larger wavelength (i.e., l − |m| = 0, 1, . . . , 7). Some of these modes are

not visible on the scale of the coupling selected in the figure because of their low coupling

coefficients. It is clear that for an offset fiber, higher-order polar modes can have stronger

coupling than the fundamental polar mode. In this case the polar modes with l − |m| = 2

have the strongest coupling. This is because of the choice of offset. For other offsets, dif-

ferent polar modes have stronger coupling. In the case of no lateral offset, the fundamental



62

polar modes have the highest coupling. This is followed by weaker coupling for each suc-

cessive higher-order polar mode. For clarity, only a small fraction of the actual number

of modes is shown. Because this graph is over one free-spectral range, modes of higher

radial order, if plotted, begin again from the left with q = 4. These modes continue to

wrap around the plotted wavelength range. Higher-order polar modes overlap with modes

of different radial order, if plotted, as well.

The spectrum is different when the fiber radius is chosen to optimally couple the

fundamental fiber and microsphere modes. This is shown in Fig. 4.16. As expected, the
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Figure 4.16. WGM TE Spectrum. (Rs = 300µm, Rf = 1.68µm, ε = 0.29, θoff = π/76).

coupling to most modes is stronger. Less expected are that the coupling to higher-order

radial modes does not drop off as it does when the fundamental modes are phase matched.

The reason for this is that the higher-order radial modes have a higher evanescent fraction.

This increases the spatial overlap of the microsphere and fiber fields. The reason that

this is not noticeable in Fig. 4.15 is that the phase mismatching between the higher-order

microsphere modes and the fiber mode has a stronger effect than the spatial overlap. For the
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conditions that produce Fig. 4.16, the spatial overlap has a stronger effect than the phase

mismatch. Also, the distribution of the coupling coefficients is different. Although it is

more noticeable for q = 3, it can be seen also for q = 1 and q = 2. The reason for this is

that the thinner taper for Fig. 4.16 overlaps differently with the extrema of the microsphere

mode. The last difference to point out is that within both of these figures the distribution

of the polar modes is different for each radial mode order. The reason for this is that for

higher radial modes the polar mode distribution is wider. This can be seen from Eq. (2.14b)

ψθ(θ) = HN

(√
mθ
)
e−

m
2

θ2

, m� 1 � θ.

Higher-order radial modes have lower values of l and m. Lower values of m cause the

Gaussian part of Eq. (2.14b) to have a wider distribution. For the modes shown here,

l = 1730 when q = 1, l = 1713 when q = 2, and l = 1699 when q = 3.

Figure 4.17 shows both the microsphere TE and TM spectra. The distribution of the

coupling coefficients are the same except that the TE modes are coupled to more strongly

than the TM modes are, as explained in the previous section. Also, there is a shift in the

wavelength due to the polarization (see Eq. (2.23).)

In an experiment, the throughput intensity at the end of the fiber is measured. There

is a dip in the intensity of the throughput when the frequency is resonant with a WGM. The

depth and width of the dip depends on the total quality factor of the mode; this includes the

intrinsic Q, which is related to losses due to absorption and scattering, and the external Q,

which is related to the coupling loss. The depth of the dip is calculated from

d =
4x

(1 + x)2
, (4.2)

where

x =
T

αl
. (4.3)

The parameter x is just the ratio of the coupling loss T = |κ|2 to the intrinsic loss αl,

where l is the circumference of the sphere. The value of x indicates the type of coupling

present in the system. If x > 1, then the system is overcoupled. If x < 1, the system is

undercoupled. If x = 1, then the intrinsic and external losses balance each other, resulting
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in critical coupling. For the critically coupled case, the throughput of the system becomes

zero, as can be seen from Eq. (4.2). The width ∆λ of a dip is calculated from

w ≡ ∆λ

2
=

1

2

λ2[αl − ln(1 − T )]

2πlns

=
1

2

λ2[2πRsα− ln(1 − |κ̃fs|2)]
4π2nsRs

. (4.4)

The spectrum can now be plotted by defining a function f for the throughput of the fiber,

f(λ) = 1 −
N∑

i=1

4xi

(1 + xi)2

w2
i

(λ− λi)2 + w2
i

, (4.5)

where λi is the resonant wavelength of the ith mode and N is the number of modes in the

range of the plot. An example of a WGM TE throughput spectrum is shown in Fig. 4.18. In

this figure, the intrinsic loss is chosen to be equal to the mean of the coupling losses for all

of the modes shown. The high quality factors of the mode are evident from the sharpness

of the dips. The line shape is plotted in Fig. 4.19.
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Figure 4.19. WGM Lineshape.

The spectra can be improved even more by including the frequency shift due to the

fiber perturbing the microsphere. Without the fiber present, the index of refraction outside

of the sphere is just that of air or liquid, depending on the situation. With the fiber present,

the microsphere mode sees an effective index that includes the fiber. The value of the

effective index is found by averaging the index profile over the evanescent portion of the
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microsphere. The expression is

no,eff =

∫∫∫
r>Rs

|Ψs(r, θ, φ)|2 nf(r, θ, φ) r2 dr dθ dφ

∫∫∫
r>Rs

|Ψs(r, θ, φ)|2 r2 dr dθ dφ

, (4.6)

where the integration is performed over the entire region outside of the microsphere. In the

actual calculation, the numerator is split into two parts - the total volume and the volume

of the fiber. Making use of the step-index profile of the fiber, the numerator becomes

no

∫∫∫
r>Rs

|Ψs(r, θ, φ)|2 r2 dr dθ dφ

− (no − nf)

∫∫∫
r<Rf

|Ψs(r, θ, z)|2 r dr dθ dz,
(4.7)

where the second integral is performed in the fiber’s coordinate system.

For a microsphere-fiber system with Rs = 300µm, Rf = 2.47µm, ns = nf = 1.44,

no = 1.00, and the fiber placed in contact with the microsphere exactly at the equator,

the effective ambient index is found to be no,eff = 1.0005 for a fundamental TE mode at

λ = 1550 nm. This causes the wavelength of the WGM mode to be shifted by only 0.6 pm.

This is in agreement with experimental measurements.[60]

4.3 Microsphere Lasing

Lasing has been demonstrated in fused silica microspheres in several different

systems[39,61–63] including, recently, Raman lasing,[61] using sol-gel coatings,[62] and with

HgTe nanoparticle coatings.[63] Modeling the lasing of microspheres is interesting for a

couple of reasons. One is that for spheres of experimental interest, there are many possible

modes for which emission can occur. This means that the different lasing modes compete

for the gain medium. The other reason is that a high fraction of the light spontaneously

emitted by particles on the microsphere’s surface is captured by a WGM. The effects of

these issues on the laser threshold are addressed below.
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4.3.1 Mode Competition

Lasing in nanoparticle coated microspheres is achieved by pumping the nanoparticles

with light at a wavelength of about 800 nm. This is accomplished by coupling laser light

from a tapered fiber into a WGM of the microsphere. The emission is 1550 nm for the

numerical example presented here. In general, the threshold condition for a single-mirror

ring cavity laser is that the net gain after a single pass be greater than one, or

re(γt−α)l ≥ 1, (4.8)

where r is the reflection coefficient of the mirror, γt is the gain coefficient, and α is the

absorption coefficient. Solving for the gain results in

γt = α− 1

l
ln(r). (4.9)

In the case of the microsphere this is

γt = α− 1

2πRsns
ln
[(

1 − |κ̃fs|2
)1/2
]

= α− 1

4πRsns
ln
[
1 − |κ̃fs|2

]
. (4.10)

Equation (4.10) can be converted to find the the threshold condition for the inversion den-

sity. It is found to be proportional to the gain, or

∆Nt ∝ α− 1

4πRsns
ln
[
1 − |κ̃fs|2

]
. (4.11)

Because the different WGMs have different coupling coefficients with the fiber, each WGM

has a different threshold for the inversion density. This means that as the pump power

increases, the output at the emission wavelength does not exhibit an abrupt turn on, but a

gradual one as the different modes begin to lase. This isn’t a complete picture, however,

because the lasing modes compete for the gain medium.

The reason why lasing modes compete for gain medium is that the medium can be-

come saturated. In this analysis, the gain medium is assumed to be homogeneously broad-

ened. This means that there are cross-saturation effects between the different modes. For

inhomogeneously broadened media, the frequency difference between the modes would
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prevent cross-saturation between the different lasing modes. Although there are many dif-

ferent modes that can lase, this system can be analyzed by considering two-mode competi-

tion and expanding to many modes.

The competition of two lasing modes can be analyzed by studying the stability of

the rate equations.[64–66] The rate equations for two competing modes in the conventional

notation are

dI1
dt

= (α1 − β1I1 − θ12I2) × I1, (4.12a)

dI2
dt

= (α2 − β2I2 − θ21I1) × I2, (4.12b)

where the I’s are the intensity of the modes, the α’s are the unsaturated gains minus losses,

the β’s are the self-saturation coefficients, and the θ’s are the cross-saturation coefficients.

Because this notation can be confusing for the fiber-microsphere system, a few changes

are made. The unsaturated gains minus losses are proportional to the self-saturation coef-

ficients, so both are replaced by a factor F . The calculation of the cross-saturation coeffi-

cients is similar to that of the coupling coefficients, so the symbol is changed to κ. In this

notation, the rate equations become

dI(1)

dt
=
(
F (1) − F (1)I(1) − κ(1,2)I(2)

)× I(1), (4.13a)

dI(2)

dt
=
(
F (2) − F (2)I(2) − κ(2,1)I(1)

)× I(2), (4.13b)

where I(i) and F (i) are the intensity and self-saturation coefficients of the ith mode, re-

spectively. κ(i,j) are the cross-saturation coefficients between the ith and j th modes. For

steady-state solutions, either the intensity has to be zero or the saturated gain must be zero,

or

I(1) = 1 −
(
κ(1,2)

F (1)

)
I(2), (4.14a)

I(2) = 1 −
(
κ(2,1)

F (2)

)
I(1). (4.14b)

If the solutions of Eq. (4.14) do not intersect, then only one of the modes lases. If the

solutions do intersect, then both modes can lase simultaneously. In this case, the saturated
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gains of the modes are given by

F (1)
s =

F (1)

1 + F (1)I(1) + κ(1,2)I(2)
, (4.15a)

F (2)
s =

F (2)

1 + F (2)I(2) + κ(2,1)I(1)
. (4.15b)

The intent of this model is to get a qualitative, rather than a quantitative demon-

stration of the threshold behavior of a microsphere laser. The unsaturated gain and the

self-saturation coefficient of a given lasing mode are found by calculating the overlap be-

tween the pump mode and the lasing mode. For simplicity, only the polar dependences of

the modes are considered. The value is then

F (i) =

√∫ ∣∣∣ψ(p)
θ (θ)ψ

(i)
θ (θ)
∣∣∣ dθ, (4.16)

where ψ(p)
θ (θ) and ψ(i)

θ (θ) are the polar dependences of the pump mode and the ith lasing

mode, respectively. This is different from the overlap integral used to calculate the coupling

coefficients because it integrates over magnitude. In the case of field coupling, sign effects

can prevent two modes from coupling if their symmetries conflict. In the case of optical

pumping, the signs of the fields do not determine whether the nanoparticles are excited. To

determine the cross-saturation coefficients, it is useful to define the integrand of Eq. (4.16)

as a separate function

ψ
(p,i)
θ (θ) = K(p,i)ψ

(p)
θ (θ)ψ

(i)
θ (θ), (4.17)

where K(p,i) is a normalization factor. The cross-saturation coefficients are now

κ(i,j) =

√
F (i)F (j)

∫ ∣∣∣ψ(p,i)
θ (θ)ψ

(p,j)
θ (θ)
∣∣∣ dθ. (4.18)

The power in the ith mode as a function of the pump photon density N0 is given by

P (i)(N0) =
F (i)N0

N
(i)
t

(
1 − UnitStep

[
F (i)N0 −N

(i)
t

])

+

(
106MdSel[i]

(
F (i)N0 −N

(i)
t

)( 1

1 + 0.01
∑24

j=1 κ
(i,j)P (j)

)
+ 1

)

∗ UnitStep[F (i)N0 −N
(i)
t ], (4.19)
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where the computer functions UnitStep and MdSel are used to turn the lasing on and off.

UnitStep is just the normal step function in Mathematica. The user-written function MdSel

is a function of the pump power and is determined from the stability analysis. It is equal

to unity when no other lasing mode cuts it off and is equal to zero when any of the other

lasing modes cut it off. The factor of 106 is the ratio of the slope of the mode power when

the mode is lasing compared to when it is not. The factor of 0.01 determines the amount of

saturation of the gain medium. The total power in the laser is found from the superposition

of all of the modes,

P tot(N0) =
24∑
i=1

P (i)(N0). (4.20)

A demonstration of multimode lasing is shown in Fig. 4.20. The different colors

refer to pump modes of different polar order N = l − |m|. The lasing modes are taken

from the spectrum of Fig. 4.15. It is clear from Fig. 4.20 that mode competition can result

in nonlinear threshold behavior. The difference between the lasing with different pump

modes can be explained by the confinement of the pump modes. The fundamental polar

modeN = 0 has the tightest confinement. This enables the threshold to be lower than when

using a higher-order pump mode. Using a higher-order pump mode does have a different

advantage, however. The higher-order pump mode, being more spread out spatially, is able

to activate more lasing modes with less saturation. This is seen in the crossing of the laser

output curves for the different modes N = 0, N = 3, and N = 6.

4.3.2 Spontaneous Emission Capture Fraction

Experiments[39–41,61–63] indicate that the threshold of microsphere lasers can be very

low. This indicates that a high fraction of the spontaneous emission is captured by a lasing

WGM. This fraction is calculated[67] for a single quantum dot placed near the surface of a

sphere using a generalized Lorentz-Mie scattering theory.[33] Using this method for calcu-

lating the capture fraction of spontaneous emission, it is found that a high capture fraction

is expected.[67] Furthermore, it is found that the emission pattern of a dipole placed on the

surface of a dielectric is pulled into the medium of higher refractive index.[68] A topic of

current and future research is to better understand and quantify the amount of spontaneous
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Figure 4.20. Laser Threshold. (Rs = 300µm, Rf = 2.47µm, ε = 0.29, θoff = π/76). The
different colors refer to pump modes of different polar order N = l − |m|.

emission captured by a WGM for a microsphere under conditions used in lasing experi-

ments where HgTe nanoparticle coatings are used.



CHAPTER 5

CONCLUSIONS AND PERSPECTIVES

Coupled-mode theory is used to calculate the coupling between modes of a tapered

fiber and whispering-gallery modes of a fused-silica microsphere. The two important fac-

tors that determine the amount of coupling are the spatial overlap of the fields and the phase

matching between them. These coupling coefficients are calculated by numerically evalu-

ating the field overlap integrals where the interference due to phase mismatch is included.

The method is applied to determine the optimal taper radius for coupling to a microsphere

and to calculate WGM spectra that include non-ideal conditions so that they can be com-

pared directly to experiment. The calculated spectra are then used to model multimode

lasing in a microsphere.

The calculations of optimal fiber radii indicate that the highest coupling from a fun-

damental taper mode to a microsphere mode is achieved with a fiber that has a radius about

30% smaller than for perfect phase matching. For these fiber sizes, the coupling is about

twice as strong as for the phase-matched condition. This is not the traditionally held belief,

however. Common reasoning led to the belief that the effect of phase-mismatch prevents

significant coupling between two modes. The reason that this is not correct is that this ar-

gument does not consider the changes in spatial overlap of the fields when the fiber radius

is altered from the phase-matched radius. The numerical calculations in this study show

that for tapers smaller than for phase matching there are two regimes of behavior. In one

regime, the spatial overlap has a larger effect than the phase-mismatch. In the other regime,

the phase-mismatch has a larger effect than the spatial overlap. An additional advantage

of using the smaller taper radii is that losses to higher-order fiber modes are substantial for

phase-matched taper radii. Calculations also show that changing from TE to TM micro-

sphere modes does not change the overall conclusion. However, the calculations indicate
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that coupling to the microsphere TE modes is stronger than to the TM modes. This is a

result of the longitudinal field overlap present when coupling into TM modes. The con-

tribution of the longitudinal field overlap opposes the contribution of the transverse field

overlap.

The calculation of WGM spectra shows that there are many possible modes that can

be coupled within one free-spectral range of the microsphere. The calculated values of the

coupling coefficients are consistent with experimental data.[60] With the fiber taper laterally

offset from, but still parallel to the equatorial plane of the microsphere, the coupling to the

fundamental polar mode is not as strong as to some of the higher-order polar modes. This

is in agreement with experimental data and is a result of higher-order polar modes having

more polar extent. The inclusion of eccentricity and lateral offset enables the numerical

calculations to be directly compared to experiment. These calculations are then valuable

both for designing experiments and interpreting the resulting data. In particular, WGM

spectra can be used to model multimode lasing in a microsphere.

The lasing model presented here allows for lasing of multiple modes. Each lasing

mode has a different threshold value. One reason for this is that the different lasing modes

have different coupling coefficients, taken from the calculation of WGM spectra. This

means that the quality factor may not be the same for all modes. The other is that each

lasing mode has a different amount of spatial overlap with the pump mode. In addition to

each mode having a different threshold, the lasing modes compete for the gain media. This

is taken into account by using two-mode stability analysis and applying it to all pairs of

modes. The results of this model are that the threshold behavior is nonlinear, as modes are

activated and then cut off by other modes. The model indicates that the lowest threshold

is attained when using a pump mode of fundamental polar order. This is because of the

narrow confinement of the mode along the equator of the microsphere. The highest laser

output is found when pumping with a higher-order polar mode. This is because the larger

spatial distribution of the pump mode allows more modes to lase with less saturation.

In the process of performing this research several topics in basic physics have come

to the surface. One is that the wave nature of light dominates on the size scales used

here. This means that the behavior of the fiber-microsphere system is different from that
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of a cavity that can be described by classical ray optics. The most obvious difference is

in the fact that light can actually couple between the fiber and microsphere. In the ray

picture the light stays in the waveguide unless the angle of incidence of a ray is to hit the

surface at an angle less than the critical angle. The coupling of light is a tunneling process

that violates Snell’s Law. This is analogous to a particle tunneling out of a potential well

in quantum mechanics. Even so, with a taper-coupled microsphere the term “frustrated

total internal reflection” is barely applicable if used to describe the coupling phenomenon.

In prism-coupled microspheres, the light ray is actually directed toward the microsphere.

In this case, there is a small probability that a photon tunnels across the refractive index

barrier between the prism and microsphere. In fiber-coupled microspheres, the situation is

different. In a taper, the light does not actually travel by bouncing in a zig-zag path within

the fiber. The light travels straight down the fiber, with most of the light contained in the

taper and a small portion of it in the taper’s surroundings. The spatial distribution of the

modes does not change along the direction of propagation. The same is true for whispering-

gallery modes in a microsphere. This means that in the coupling region light in the fiber

and the microsphere are actually going in the same direction. Thus, the coupling occurs

perpendicular to the direction of propagation. One effect of this is that, unlike in the case

of a classical resonator, a photon that tunnels from one waveguide to another may tunnel

back into the first waveguide within the interaction region.

Another aspect of coupling between a fiber and a microsphere is that the coupling

coefficients are not the same for FMC and MFC unless the propagation constants of the

two modes are identical. This raises questions about the intracavity intensity and energy

conservation. Both of these questions are resolved by the fact that tunneling is perpendic-

ular to the direction of propagation. The intracavity intensity as calculated in a classical

resonator but with directionally dependent transmission coefficients is not equal to the in-

tensity as calculated with coupled-mode theory. This is because of the fact that a photon

that tunnels from one waveguide to another may tunnel back into the first waveguide within

the interaction region. The question about energy conservation lies in how the power flow

remains a constant and how time reversal is not violated when the coupling coefficients

are unequal (κsf �= κfs). Again, this is not a problem because the tunneling is not in the
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direction of propagation. In fact, the difference in coupling coefficients is necessary when

the propagation constants are unequal.

The results of this study lead to new research pursuits. As was mentioned in the

applications chapter, calculations of the capture fraction of the spontaneous emission of a

dipole on the surface of a microsphere by a WGM will greatly improve the understand-

ing of microsphere lasing. Also, this research is being extended to the coupling between

two microspheres for application to coupled-resonator induced transparency (CRIT) and

absorption (CRIA) theory[69] and experiments.[70] These phenomena are seen by coupling

a second microsphere to a microsphere that is already coupled to a tapered fiber. The real-

ization of CRIT and CRIA is strongly dependent on the fiber-microsphere coupling and the

microsphere-microsphere coupling. Adding data from microsphere-microsphere coupling

to the data already calculated in this study will greatly facilitate coupled-resonator research.
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APPENDIX A

STEP-INDEX FIBER MODES

The fields of step-index fiber modes are calculated by solving the wave equation in

cylindrical coordinates. Step-index fibers have the index profile

n(r) =

⎧⎪⎨
⎪⎩

n1, for r < Rf ,

n2, for r > Rf ,
(A.1)

where Rf is the radius of the core. The following development closely follows that of

Yariv.[52] The direction of propagation is taken to be the z-direction. The wave equation in

the longitudinal direction is

(∇2 + k2
)⎛⎜⎝ Ez

Hz

⎞
⎟⎠ = 0, (A.2)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (A.3)

The solutions are assumed to have the harmonic form,⎛
⎜⎝ E(r, t)

H(r, t)

⎞
⎟⎠ =

⎛
⎜⎝ E(r, θ)

H(r, θ)

⎞
⎟⎠ ei(ωt−βz). (A.4)

The Maxwell equations can then be expressed as

Er =
−iβ

ω2µε− β2

(
∂

∂r
Ez +

ωµ

β

∂

r∂θ
Hz

)
, (A.5a)

Eθ =
−iβ

ω2µε− β2

(
∂

r∂θ
Ez − ωµ

β

∂

∂r
Hz

)
, (A.5b)

Hr =
−iβ

ω2µε− β2

(
∂

∂r
Hz − ωε

β

∂

r∂θ
Ez

)
, (A.5c)

Hθ =
−iβ

ω2µε− β2

(
∂

r∂θ
Hz +

ωε

β

∂

∂r
Ez

)
. (A.5d)
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The wave equation in the longitudinal direction is now

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+
(
k2 − β2

))⎛⎜⎝ Ez

Hz

⎞
⎟⎠ = 0. (A.6)

The solutions of the separable equation take the form ,⎛
⎜⎝ Ez

Hz

⎞
⎟⎠ = ψ(r)e±ilθ, l = 0, 1, 2, ... . (A.7)

Then the wave equation becomes

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

(
k2 − β2 − l2

r2

)
ψ = 0, (A.8)

which is the Bessel differential equation. In general, the solutions are of the form

ψ(r) =

⎧⎪⎨
⎪⎩

c1Jl(hr) + c2Yl(hr), k2 − β2 > 0, in the core,

c1Il(qr) + c2Kl(qr), k2 − β2 < 0, in the cladding,
(A.9)

where

h2 = k2 − β2,

q2 = β2 − k2.

Here, h and q are the magnitudes of the vectors h = k − β in the core and q = β − k in

the cladding. Thus, they indicate the deviations of the core and cladding wave vectors from

the propagation vector. The Bessel functions are labeled as follows

Jl(x) = first kind,

Yl(x) = second kind,

Il(x) = modified first kind,

Kl(x) = modified second kind.

For the modes to be confined and finite, the solutions take the form,

ψ(r) =

⎧⎪⎨
⎪⎩

cJl(hr), k2 − β2 > 0,

cKl(qr), k2 − β2 < 0.
(A.10)
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The longitudinal components of the fields are now

Ez =

⎧⎪⎨
⎪⎩

AJl(hr)e
i(ωt+lθ−βz), r < Rf ,

CKl(qr)e
i(ωt+lθ−βz), r > Rf ,

(A.11a)

Hz =

⎧⎪⎨
⎪⎩

BJl(hr)e
i(ωt+lθ−βz), r < Rf ,

DKl(qr)e
i(ωt+lθ−βz), r > Rf .

(A.11b)

The tangential components can be found using the Maxwell equations. Here is the work for

the fields inside the core:

Er(r < Rf ) =
−iβ

ω2µε1 − β2

(
∂

∂r
Ez +

ωµ

β

∂

r∂θ
Hz

)
∂

∂r
(Ez) =

∂

∂r

(
AJl(hr)e

i(ωt+lθ−βz)
)

= AhJ ′
l(hr)e

i(ωt+lθ−βz),

∂

∂θ
(Hz) =

∂

∂θ

(
BJl(hr)e

i(ωt+lθ−βz)
)

= ilBJl(hr)e
i(ωt+lθ−βz),

=
−iβ

ω2µε1 − β2

(
AhJ ′

l(hr) +
iωµl

βr
BJl(hr)

)
ei(ωt+lθ−βz)

ω2µε1 − β2 = n2
1ω

2µεo − β2 = n2
1

(ω
c

)2
− β2

= n2
1k

2 − β2 = h2,

=
−iβ
h2

(
AhJ ′

l (hr) +
iωµl

βr
BJl(hr)

)
ei(ωt+lθ−βz).

Eθ(r < Rf) = − iβ
h2

(
∂

r∂θ
Ez − ωµ

β

∂

∂r
Hz

)
∂

∂θ
(Ez) =

∂

∂θ

(
AJl(hr)e

i(ωt+lθ−βz)
)

= ilAJl(hr)e
i(ωt+lθ−βz),

∂

∂r
(Hz) =

∂

∂r

(
BJl(hr)e

i(ωt+lθ−βz)
)

= BhJ ′
l (hr)e

i(ωt+lθ−βz),

= − iβ
h2

(
il

r
AJl(hr) − ωµ

β
BhJ ′

l (hr)

)
ei(ωt+lθ−βz).
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Hr(r < Rf ) = − iβ
h2

(
∂

∂r
Hz − ωε1

β

∂

r∂θ
Ez

)

= − iβ
h2

(
BhJ ′

l(hr) −
iωε1l

βr
AJl(hr)

)
ei(ωt+lθ−βz).

Hθ(r < Rf) = − iβ
h2

(
∂

r∂θ
Hz +

ωε1l

β

∂

∂r
Ez

)

= − iβ
h2

(
il

r
BJl(hr) +

ωε1
β
AhJ ′

l (hr)

)
ei(ωt+lθ−βz).

The fields outside of the core are found in the same manner using

q2 = β2 − ω2µε2. (A.12)

All of the fields are

for the core (r < Rf ),

Er = − iβ
h2

(
AhJ ′

l (hr) +
iωµl

βr
BJl(hr)

)
cos(ωt+ lθ − βz), (A.13a)

Eθ =
β

h2

(
il

r
AJl(hr) − ωµ

β
BhJ ′

l(hr)

)
sin(ωt+ lθ − βz), (A.13b)

Ez = AJl(hr) cos(ωt+ lθ − βz), (A.13c)

Hr =
β

h2

(
BhJ ′

l (hr) −
iωε1l

βr
AJl(hr)

)
sin(ωt+ lθ − βz), (A.13d)

Hθ = − iβ
h2

(
il

r
BJl(hr) +

ωε1
β
AhJ ′

l(hr)

)
cos(ωt+ lθ − βz), (A.13e)

Hz = BJl(hr) cos(ωt+ lθ − βz), (A.13f)
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and for the cladding (r > Rf ),

Er =
iβ

q2

(
CqK ′

l(qr) +
iωµl

βr
DKl(qr)

)
cos(ωt+ lθ − βz), (A.14a)

Eθ = − β

q2

(
il

r
CKl(qr) − ωµ

β
DqK ′

l(qr)

)
sin(ωt+ lθ − βz), (A.14b)

Ez = CKl(qr) cos(ωt+ lθ − βz), (A.14c)

Hr = − β

q2

(
DqK ′

l(qr) −
iωε2l

βr
CKl(qr)

)
sin(ωt+ lθ − βz), (A.14d)

Hθ =
iβ

q2

(
il

r
DKl(qr) +

ωε2
β
CqK ′

l(qr)

)
cos(ωt+ lθ − βz), (A.14e)

Hz = DKl(qr) cos(ωt+ lθ − βz), (A.14f)

where the convention is used that the tangential components of the electric field are real and

the longitudinal components are imaginary. This requires A and C to be imaginary, and B

and D to be real. A can be chosen to be imaginary, and the other amplitudes are calculated

from A using the boundary conditions.

A.1 Boundary Conditions

The boundary conditions that are used to calculate B, C, and D from A are the

continuity of the θ and z-components of the fields.

Eθ|r→R−
f

= Eθ|r→R+
f
,

− iβ
h2

(
AhJ ′

l(hRf ) +
iωµl

βRf

BJl(hRf)

)
=
iβ

q2

(
CqK ′

l(qRf) +
iωµl

βRf

DKl(qRf )

)
,

A

(
il

h2Rf
Jl(hRf )

)
+B

(
−ωµ
hβ

J ′
l(hRf )

)

+ C

(
il

q2Rf
Kl(qRf)

)
+D

(
−ωµ
qβ
K ′

l(qRf )

)
= 0. (A.15)

Ez|r→R−
f

= Ez|r→R+
f
,

AJl(hRf ) = CKl(qRf),
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AJl(hRf ) − CKl(qRf ) = 0. (A.16)

Hθ|r→R−
f

= Hθ|r→R+
f
,

− iβ
h2

(
il

Rf
BJl(hRf) +

ωε1
β
AhJ ′

l (hRf )

)
=
iβ

q2

(
il

Rf
DKl(qRf ) +

ωε2
β
CqJ ′

l(qRf)

)
,

A

(
ωε1
hβ

J ′
l(hRf )

)
+B

(
il

h2Rf

Jl(hRf )

)

+ C

(
ωε2
qβ

K ′
l(qRf)

)
+D

(
il

q2Rf
Kl(qRf)

)
= 0. (A.17)

Hz|r→R−
f

= Hz|r→R+
f
,

BJl(hr) = DKl(qr),

BJl(hRf) −DKl(qRf) = 0. (A.18)

From Eq. (A.16),

C

A
=
Jl(hRf)

Kl(qRf)
. (A.19)

From Eq. (A.18),

D

B
=
Jl(hRf )

Kl(qRf )
. (A.20)

Now, combining Eqs. (A.15), (A.19), and (A.20)

A

(
il

h2Rf

Jl(hRf )

)
− B

(
ωµ

hβ
J ′

l(hRf )

)

+ A

(
Jl(hRf )

Kl(qRf )

il

q2Rf
Kl(qRf)

)
− B

(
Jl(hRf)

Kl(qRf)

ωµ

qβ
K ′

l(qRf)

)
= 0,

A

(
il

h2Rf
Jl(hRf) +

il

q2Rf
Jl(hRf )

)

−B

(
ωµ

hβ
J ′

l (hRf) +
ωµ

qβ

Jl(hRf )

Kl(qRf )
K ′

l(qRf)

)
= 0,
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AJl(hRf)
il

Rf

(
1

h2
+

1

q2

)
= B

ωµ

β

(
1

h
J ′

l (hRf) +
1

q

Jl(hRf )

Kl(qRf)
K ′

l(qRf)

)
,

B

A
=

Jl(hRf )
il

Rf

(
1

h2
+

1

q2

)
ωµ

β

(
1

h
J ′

l (hRf) +
1

q

Jl(hRf )

Kl(qRf)
K ′

l(qRf)

) ,

B

A
=

iβl

Rfωµ

(
1

h2
+

1

q2

)(
J ′

l(hRf )

hJl(hRf )
+

K ′
l(qRf )

qKl(qRf)

)−1

,

B

A
=
iβl

ωµ

(
1

(hRf )2
+

1

(qRf)2

)(
J ′

l(hRf )

hRfJl(hRf)
+

K ′
l(qRf)

qRfKl(qRf)

)−1

. (A.21)

Finally, the equations used to calculate B, C, and D from A are

B

A
=
iβl

ωµ

(
1

(hRf)2
+

1

(qRf)2

)(
J ′

l(hRf )

hRfJl(hRf)
+

K ′
l(qRf)

qRfKl(qRf)

)−1

, (A.22a)

C

A
=
Jl(hRf)

Kl(qRf)
, (A.22b)

D

B
=
Jl(hRf)

Kl(qRf)
. (A.22c)

A.2 Propagation Constants

Modes occur when all the boundary conditions are met. This requires that the bound-

ary condition matrix has a determinant of zero. In matrix form, the boundary conditions

are⎛
⎜⎜⎜⎜⎜⎜⎜⎝

il
h2Rf

Jl(hRf ) −ωµ
hβ
J ′

l (hRf)
il

q2Rf
Kl(qRf) −ωµ

qβ
K ′

l(qRf)

Jl(hRf ) 0 −Kl(qRf) 0

ωε1
hβ
J ′

l(hRf )
il

h2Rf
Jl(hRf )

ωε2
qβ
K ′

l(qRf)
il

q2Rf
Kl(qRf)

0 Jl(hRf ) 0 −Kl(qRf)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A

B

C

D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (A.23)
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Setting the determinant to zero and dropping the arguments of the Bessel functions:

−JKµω
2ε1J

′K ′

β2hq
− JKµω2ε2J

′K ′

β2hq
+
J2K2l2

R2
fh

4
+
J2K2l2

R2
fq

4

+
2J2K2l

R2
fh

2q2
− K2µω2ε1J

′2

β2h2
− J2µω2ε2K

′2

β2q2
= 0,

−JKµω
2J ′K ′

β2hq
(ε1 + ε2) +

J2K2l2

R2
f

(
1

h4
+

1

q4
+

2

h2q2

)
︸ ︷︷ ︸(

( 1
h)

2
+(1

q )
2
)2

− µω2

β2

(
K2ε1J

′2

h2
+
J2ε2K

′2

q2

)
= 0,

JKµω2J ′K ′

β2hq
(ε1 + ε2) +

µω2

β2

(
K2ε1J

′2

h2
+
J2ε2K

′2

q2

)

=
J2K2l2

R2
f

((
1

h

)2

+

(
1

q

)2
)2

,

µω2J ′K ′

JKhqR2
f

εo
(
n2

1 + n2
2

)
+ µω2

(
n2

1J
′2

(hRf )2J2
+

n2
2K

′2

(qRf)2K2

)

= l2

((
1

hRf

)2

+

(
1

qRf

)2
)2

β2.

Because

εo =
1

µc2
=

1

µ(ω/ko)2
=

k2
o

µω2
,

this becomes

J ′K ′

JKhqR2
f

(
n2

1 + n2
2

)
+

n2
1J

′2

(hRf )2J2
+

n2
2K

′2

(qRf)2K2

= l2

((
1

hRf

)2

+

(
1

qRf

)2
)2(

β

ko

)2

,
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(
J ′

hRfJ
+

K ′

qRfK

)(
n1J

′

hRfJ
+

n2K
′

qRfK

)
= l2

((
1

hRf

)2

+

(
1

qRf

)2
)2(

β

ko

)2

.

With the arguments it follows that

(
J ′

l(hRf )

hRfJl(hRf)
+

K ′
l(qRf)

qRfKl(qRf)

)(
n1J

′
l(hRf )

hRfJl(hRf )
+

n2K
′
l(qRf)

qRfK(qRf )

)

= l2

((
1

hRf

)2

+

(
1

qRf

)2
)2(

β

ko

)2

. (A.24)

Because h and q are dependent on the propagation constant β, Eq. (A.24) can be used

to calculate the propagation constants. The solutions are found and classified by solving

Eq. (A.24) for

J ′
l (hRf )

hRfJl(hRf )
.

Slightly rewriting Eq. (A.24) as

n2
1

(
J ′

hRfJ

)2

+
(
n2

1 + n2
2

) K ′

qRfK

(
J ′

hRfJ

)
+ n2

2

(
K ′

qRfK

)2

− l2

((
1

hRf

)2

+

(
1

qRf

)2
)2(

β

ko

)2

= 0, (A.25)
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and solving Eq. (A.25) results in

J ′

hRfJ
= −(n2

1 + n2
2)

2n2
1

K ′

qRfK

± 1

2n2
1

{(
n2

1 + n2
2

)2( K ′

qRfK

)2

− 4n2
1

[
n2

2

(
K ′

qRfK

)2

− l2

(
1

h2R2
f

+
1

q2R2
f

)2(
β

ko

)2
]}1/2

,

J ′

hRfJ
= −(n2

1 + n2
2)

2n2
1

K ′

qRfK

± 1

2n2
1

√√√√(n4
1 − 2n2

1n
2
2 + n4

2)

(
K ′

qRfK

)2

+ 4n2
1l

2

(
β

ko

)2
(

1

h2R2
f

+
1

q2R2
f

)2

,

J ′

hRfJ
= −(n2

1 + n2
2)

2n2
1

K ′

qRfK

±

√√√√(n4
1 − 2n2

1n
2
2 + n4

2

4n4
1

)(
K ′

qRfK

)2

+
l2

n2
1

(
β

ko

)2
(

1

h2R2
f

+
1

q2R2
f

)2

,

J ′

hRfJ
= −
(
n2

1 + n2
2

2n2
1

)
K ′

qRfK

±

√√√√(n2
1 − n2

2

2n2
1

)2(
K ′

qRfK

)2

+
l2

n2
1

(
β

ko

)2
(

1

h2R2
f

+
1

q2R2
f

)2

. (A.26)

Using the recurrence relations

J ′
l(x) = −Jl+1(x) +

l

x
Jl(x),

J ′
l(x) = Jl−1(x) − l

x
Jl(x),

the solutions are for the EH modes,

Jl+1(hRf)

hRfJl(hRf )
=
n2

1 + n2
2

2n2
1

K ′
l(qRf)

qRfKl(qRf)
+

(
l

(hRf)2
− R

)
, (A.28)
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and for the HE modes,

Jl−1(hRf )

hRfJl(hRf)
= −n

2
1 + n2

2

2n2
1

K ′
l(qRf)

qRfKl(qRf)
+

(
l

(hRf)2
−R

)
, (A.29)

where

R =

√√√√(n2
1 − n2

2

2n2
1

)2(
K ′

l(qRf )

qRfKl(qRf )

)2

+
l2

n2
1

(
β

ko

)2
(

1

h2R2
f

+
1

q2R2
f

)2

. (A.30)

When l = 0, the EH and HE modes are reduced to TM and TE modes, respectively, and

their characteristic equations are

TM modes,

J1(hRf )

hRfJ0(hRf )
= −n

2
2

n2
1

K1(qRf)

qRfK0(qRf)
, (A.31)

and TE modes,

J1(hRf )

hRfJ0(hRf )
= − K1(qRf )

qRfK0(qRf )
. (A.32)



APPENDIX B

RECIPROCITY RELATION

The reciprocity relation is a tool for relating the fields of two electromagnetic modes.

In this derivation, the modes are allowed to have different permittivity profiles ε1 and ε2.

Maxwell equations in general form,

∇× E = ik

√
µ0

ε0
H, (B.1)

∇× H = J − ikε

√
µ0

ε0
E, (B.2)

and the vector identity in general form,

∇ · (A × B) = B · (∇× A) − A · (∇× B), (B.3)

are used to find the reciprocity relation.

∇ · (E1 × H∗
2)

= ∇ ·
(

E1 × i

k

√
ε0
µ0

(∇× E∗
2)

)

=
i

k

√
ε0
µ0

(∇× E∗
2) · (∇× E1) − E1 ·

(
∇× i

k

√
ε0
µ0

(∇× E∗
2)

)

=
i

k

√
ε0
µ0

(
−ik
√
µ0

ε0
H∗

2

)
·
(
ik

√
µ0

ε0
H1

)
− E1 ·
(
∇× i

k

√
ε0
µ0

(∇× E∗
2)

)

= ik

√
µ0

ε0
H1H∗

2 −
i

k

√
ε0
µ0

E1 · (∇×∇× E∗
2)

= ik

√
µ0

ε0
H1H∗

2 −
i

k

√
ε0
µ0

E1 ·
(
∇×
(
−ik
√
µ0

ε0
H∗

2

))

= ik

√
µ0

ε0
H1H∗

2 − E1 ·
(

J∗
2 + ikε2

√
ε0
µ0

E∗
2

)

= ik

√
µ0

ε0
H1H∗

2 − ik

√
ε0
µ0
ε2E1E∗

2 − E1 · J∗
2. (B.4)
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∇ · (E∗
2 × H1)

= −∇ ·
(

E∗
2 ×

i

k

√
ε0
µ0

(∇× E1)

)

= − i

k

√
ε0
µ0

(∇× E1) · (∇× E∗
2) + E∗

2 ·
(
∇× i

k

√
ε0
µ0

(∇× E1)

)

= − i

k

√
ε0
µ0

(
−ik
√
µ0

ε0
H1

)
·
(
ik

√
µ0

ε0
H∗

2

)
+ E∗

2 ·
(
∇× i

k

√
ε0
µ0

(∇× E1)

)

= − i

k

√
ε0
µ0

H1H∗
2 +

i

k

√
ε0
µ0

E∗
2 · (∇×∇× E1)

= −ik
√
µ0

ε0
H1H∗

2 +
i

k

√
ε0
µ0

E∗
2 ·
(
∇×
(
ik

√
µ0

ε0
H1

))

= −ik
√
µ0

ε0
H1H∗

2 − E∗
2 ·
(

J1 − ikε1

√
ε0
µ0

E1

)

= −ik
√
µ0

ε0
H1H∗

2 + ik

√
ε0
µ0

ε1E1E∗
2 − E∗

2 · J1. (B.5)

The reciprocity relation, found by combining Eqs. (B.4) and (B.5), is

∇ · (E1 × H∗
2 + E∗

2 × H1) = iω(ε1 − ε2)E1 · E∗
2 − (E∗

2 · J1 + E1 · J∗
2). (B.6)

For a source-free system, the reciprocity relation reduces to

∇ · (E1 × H∗
2 + E∗

2 × H1) = iω(ε1 − ε2)E1 · E∗
2. (B.7)

This can be expressed in integral form over an infinitesimal range ∆z in the direction of

propagation:

∂

∂z

∫∫
(E1 × H∗

2 + E∗
2 × H1) · ẑ dx dy

= iω

∫∫
(ε1(x, y) − ε2(x, y))E1 · E∗

2 dx dy.

(B.8)



APPENDIX C

RING CAVITY MODEL

The fiber-coupled microsphere may be modeled as a ring cavity with one reflecting

mirror. Because the coupling coefficients κsf and κfs are generally not equal, the intracavity

field must be calculated in a slightly different way than usual. The field strength in the

microsphere after N passes is given, on resonance, by

Es = tsfEf

(
1︸ ︷︷ ︸

incident

+ rfs e
iδ

︸ ︷︷ ︸
one

+
(
rfs e

iδ
)2

︸ ︷︷ ︸
two

+ . . .+
(
rfs e

iδ
)N

︸ ︷︷ ︸
round trips

)
, (C.1)

where tsf is the transmission coefficient when light passes from the fiber into the sphere, rfs

is the reflection coefficient when light inside of the sphere is internally reflected when inci-

dent with the fiber, and δ is the phase shift upon refection. Because the coupling coefficients

indicate the probability of a photon to tunnel between waveguides, they are equivalent to

transmission coefficients. The microsphere is field is calculated by summing over an infinite

number of round trips and by replacing tsf with |κ̃sf | and rfs with
√

1 − |κ̃fs|2. Assuming,

with no loss of generality, that there is no phase shift upon reflection, the result is

Es =
∞∑

N=0

(|κ̃sf |Ef)

(√
1 − |κ̃fs|2

)N

=
|κ̃sf |Ef

1 −√1 − |κ̃fs|2
. (C.2)

For small coupling coefficients, the binomial expansion may be used to approximate the

field. The microsphere field then becomes

Es
∼= |κ̃sf |Ef

1 − (1 − 1
2
|κ̃fs|2
)

∼=
(

2|κ̃sf |
|κ̃fs|2
)
Ef . (C.3)
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