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Abstract

Coupled-mode theory is used to numerically calculate the coupling coefficients between the modes of a tapered fiber and those of a
fused-silica microsphere. In the visible and near-infrared wavelength ranges, typical tapered fibers are multimode. To maximize the pho-
ton tunneling from the fundamental fiber mode to the microsphere whispering-gallery mode and to minimize the tunneling from the
sphere to higher-order fiber modes, the optimal fiber radius is found to be somewhat smaller than that for phase matching. Also calcu-
lated are whispering-gallery mode spectra that take into account the eccentricity of the microsphere and the fact that in an experiment the
tapered fiber is not necessarily perfectly aligned with the equatorial plane of the microsphere.
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1. Introduction

In a dielectric microsphere, light in the form of a whis-
pering-gallery mode (WGM) propagates around the equa-
tor, spatially confined to a narrow region near the sphere’s
surface, guided by total internal reflection. Fused-silica
microspheres have extremely low WGM losses that allow
them to be used as high-Q microresonators [1,2]. Such mic-
roresonators have been shown to have potential use in
many areas, including cavity quantum electrodynamics
[3], laser stabilization [4], microlasers [5-8], nonlinear
optics [9-11], and evanescent-wave sensing [12,13]. The
utility of a microsphere resonator can be limited because
of the morphology dependence of the resonant frequencies
of the WGMs — i.e., the resonant frequencies are fixed by
the geometry of the sphere and thus not easily tunable.
However, experimental advances in compression tuning
[14-16] and locking of microsphere WGM resonances
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[15,16] has improved these conditions by providing for tun-
ing over a greater range with faster response. Many of
these optical systems employ the technique of evanescently
coupling light into and out of the WGMs of the micro-
spheres via photon tunneling from and to modes of tapered
optical fibers (see Fig. 1). Although widely used, this tech-
nique requires consideration of experimental effects associ-
ated with less than ideal conditions in the coupling process.
Presented here are calculations that detail the effects of
varying the size of the tapered-fiber radius and that explore
the WGM spectra associated with the non-ideal aspects of
an experiment.

Tapering a fiber, by any of several methods, introduces
some interesting effects that must be considered. The fiber
configuration often used is the bitaper. A bitaper consists
of a non-tapered portion of the fiber at the first end, into
which the laser light is launched. This is followed by a taper
transition region where the radius of the fiber decreases
with distance. The portion of the fiber after the transition
is known as the taper. This is followed by a second taper
transition region of increasing fiber radius and ends with
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Fig. 1. Microsphere evanescently coupled to a tapered fiber. In this
diagram E; and E, indicate the incident and reflected electric fields as in
standard ring cavity notation. The «’s refer to the coupling coefficients
between the fiber and microsphere modes. The arrows indicate the
direction of propagation in the fiber taper and microsphere.

another non-tapered portion. The non-tapered portion of a
single-mode fiber is designed to support only the funda-
mental mode; hence the small size of the core relative to
the transmission wavelength and the low index contrast
between the core and the cladding. However, in the tapered
portion of the fiber, the light is guided by the cladding—air
interface and thus the tapered fiber can support multiple
modes. In an ideal adiabatic taper transition, the taper
angle is small enough so that the fundamental HE;; mode
can be considered unperturbed as it evolves from being
core guided to cladding guided. Within a non-ideal or
non-adiabatic taper transition, the cladding guided HE;
mode couples to higher-order fiber modes of the same sym-
metry. The next higher-order fiber mode in the same family
is the HE |, mode. Before coupling to the microsphere, the
only excited modes in the tapered portion of the fiber are
these two modes, if the taper transition is sufficiently adia-
batic. After coupling with the microsphere, other higher-
order fiber modes may be excited. This is because the
microsphere mode may couple to any mode supported by
the taper. Here we demonstrate that the radius of the
tapered portion of the fiber can be chosen to maximize
the coupling of the fiber HE;; mode to the microsphere
mode, while minimizing the losses incurred by the coupling
of the microsphere’s WGM to the higher-order fiber modes
of different families. These losses result because the light in
these fiber modes does not couple back into the HE;; mode
at the transmission end of the bitaper when the second
taper transition is adiabatic. Early arguments [17,18]
assumed that optimal coupling is accomplished by phase
matching the microsphere mode to the fundamental fiber
mode. Although this still scems to be the prevalent view
[19-21], in this work we show that optimal coupling is actu-
ally accomplished by tapering the fiber to a smaller radius
than that for phase matching.

Our calculation of the spectra for WGMs of different
radial order ¢ (number of radial intensity maxima) and
polar order / — |m| (one less than the number of intensity
maxima in “latitude”) includes non-ideal factors that are
present under experimental conditions. In practice, the
microsphere usually has an eccentricity. This eccentricity

removes the frequency degeneracy of the modes of different
polar order. Also, the fact that the tapered fiber may not be
exactly aligned with the equatorial plane of the micro-
sphere increases the number of WGMs to which the fiber
may couple. With perfect alignment, only the even polar
order (symmetric) modes of the microsphere are excited.
With imperfect alignment, the odd polar order (antisym-
metric) modes are also excited.

The method used for calculating the coupling coeffi-
cients is outlined in Section 2. Calculations of optimal fiber
radii are presented in Section 3. WGM spectra calculations
are discussed in Section 4, and Section 5 summarizes the
results.

2. Calculation of coupling coefficients

Coupled-mode theory that is formulated for evanescent
coupling between a tapered optical fiber and a microsphere
can be used to calculate the probability of transmission (i.e.
tunneling) of a photon from a fiber mode to a microsphere
mode, or vice versa. This theory has been previously used
to derive approximate formulae for predicting the coupling
phenomena from tapered fibers to the high-Q WGMs of
microsphere resonators [22]. The derivations were based
on previous work [23] using the weak-coupling approxima-
tion [24]. The work that we present here advances these cal-
culations by taking into account the vectorial nature of the
fields as in Ref. [25]; specifically, both the transverse and
longitudinal components are considered. The fiber—micro-
sphere system can be considered analogous to a ring cavity
with a partially reflecting mirror. In this analogy, what we
are calculating is the mirror transmission 7, which is
related to the fiber—microsphere field coupling coefficient
K by T = |k

There are two factors critically important in determining
the amount of fiber-microsphere field coupling: the
amount of overlap of the fiber modes with the sphere
modes and the phase-matching between them. This is true
whether the coupling is for light entering the microsphere,
i.e., fiber-to-microsphere coupling (FMC), or for light exit-
ing the microsphere, i.e., microsphere-to-fiber coupling
(MFC). The coupling strength for FMC at a point z in
the direction of propagation is given by the overlap integral
[25]

@) =5 =N [ (B B ) dvay,
AS

(1)
where x(z) is the coupling coeflicient, n; and n, are the
indices of refraction of the microsphere and air, and Ej
and E% ) are the transverse and longitudinal components
of the electric field of the fiber (microsphere). The coupling
coefficient is a smooth function of z because of the curva-
ture of the microsphere’s surface. The curvature affects
the amplitudes of the projections of the microsphere’s field
components into the fiber’s coordinate system and the size
of the spatial gap between the fiber and the sphere. N,and
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N are factors that normalize the power of the fiber and
microsphere modes. They are calculated from

1 €0
1= 50 [ [ s o) B @

This means that r(z) is in units of m~'. Because the WGM
is unidirectional and occupies a region very near to the sur-
face of the microsphere, we can treat the microsphere as a
waveguide. The fact that it is a resonator is because of
round-trip boundary conditions, which are independent
of the coupling tunneling probability. In coupled-mode
theory, the integration takes place over the cross section
of the guide into which the light is being coupled. There-
fore, the integration for FMC in Eq. (1) is performed over
the cross-sectional area of the microsphere A, where the x
and y-axes are transverse to the direction of propagation.
For the relevant case of weak coupling (i.e. the coupling
coefficients are small compared to the propagation con-
stants or effective wavenumbers), the total coupling includ-
ing phase-matching effects is found to be [23]

’%Sf :/ KSf(Z)ei(ﬁfiﬂJ)zdL (3)
where i, and f; are the propagation constants of the fiber
and microsphere modes, respectively. The fiber and micro-
sphere touch at z=0. Because of the curvature of the
sphere, the effective length in z over which coupling takes
place is small compared to the microsphere radius. The
validity of Eq. (3) is supported by the fact that the calcu-
lated coupling tunneling probability, ||*, is never greater
than a few percent. Thus by substituting Eq. (1) into Eq.
(3), FMC can be summarized by the overlap integral
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where &, is the total coupling coefficient, and 48 = f,— f
is the difference in propagation constants of the two modes.
Integration for FMC is then conveniently performed over
the volume of the microsphere V. For MFC, the subscripts
fand s are interchanged in Eq. (4), and the range of inte-
gration of the overlap integral is over the volume of the fi-
ber. In this study, results are obtained by performing a full
three-dimensional numerical integration, assuming that the
fiber and microsphere are placed in contact with each other
at one point.

n2)N /N,

3. Optimal fiber radius

The optimal fiber radius is determined by calculating the
coupling coefficient between the fiber and microsphere.
Under conditions defined below for FMC, the coupling
coefficients for the HE;; and HE, fiber modes are calcu-
lated with respect to the coupling to either of the micro-
sphere transverse electric (TE) or transverse magnetic
(TM) WGMs as a function of the radius of the tapered

fiber. Any maxima that develop in each curve would reflect
an optimal coupling for a given radius of the microsphere.
These optimal coupling conditions can be explained in
terms of the two factors identified in Section 2: the amount
of overlap of the respective fiber-microsphere modes and
the phase matching between them.

Fig. 2 shows the dependence of FMC on the radius of
the taper with respect to both the HE;; and HE,, fiber
modes, for a given microsphere size. In Fig. 2, the most
important feature is evident in the coupling of the fiber
HE,; mode to the TE or TM fundamental modes (¢ = 1,
I =|m|) of the microsphere: the strongest couplings occur
at maxima where the fiber radius is smaller than the radius
for perfect phase matching between modes (indicated by
lines A and B). The reason for the increase in the coupling
strength for smaller radii than for the phase-matching
point is seen directly from Eq. (4). As the taper radius is
decreased (from the point of phase matching), the spatial
overlap of the fields is increased. At the same time, the
increasing phase mismatch reduces the coupling between
the two modes. The increasing effect of the spatial overlap
is stronger than the decreasing effect of the phase mismatch
until the radius that maximizes the coupling coefficient is
reached. For radii below this, the decreasing effect of the
phase mismatch is stronger than the increasing effect of
the spatial overlap. The asymmetry of the profiles in
Fig. 2 is a result of the fact that the fiber modes change
more with radius as the radius decreases. (Note. It is not
valid to interpret the optimal coupling condition as being
the condition that restores phase matching between the
fiber and microsphere modes once they are placed in near
proximity to one another. When in contact, the presence
of each waveguide only increases the effective index experi-
enced by the mode of the other waveguide by less than one
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Fig. 2. Optimal fiber radius. (FMC for fiber and microsphere in contact,
Ryphere = 300 um, 4 = 1550 nm, ny,=n,=1.44, n,=1.00, g=1, [ —|m|
=0.) The lines that peak for fiber radii of about 1.6 um are for HE;,
coupling and lines that peak for fiber radii of about 4.0 um are for HE,
coupling. The vertical lines A and B indicate where the fiber HE; mode is
perfectly phase matched to the fundamental microsphere TM and TE
modes, respectively.
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hundredth of a per cent. The effective index of the fiber
HE;; mode is one and a half per cent less for the fiber size
that produces maximal coupling than for the size that pro-
duces phase matching with the microsphere mode.)

The HE; and HE, modes have their strongest coupling
at different taper radii. Thus, by changing the taper radius,
the coupling can be selected to be primarily from either one
of these modes. Similarly, at a certain radius of the taper,
the coupling can be chosen to be from a superposition of
the two modes. See, for example, a radius in the range of
3.0-3.5 um in Fig. 2. Both the HE;; mode and the HE,
mode couple less strongly to the microsphere TM modes
than to the microsphere TE modes. This can be explained
by the nature of the microsphere TE and TM modes them-
selves. The electric fields of the TE modes in the coupling
region are tangent to the surfaces of the microsphere and
fiber. The electric fields of the TM modes are primarily per-
pendicular to the surfaces and are discontinuous, but the
TM modes also have nonzero longitudinal field compo-
nents. Fig. 2 indicates that the contributions of the trans-
verse and longitudinal components of the fields in Eq. (4)
are opposing for both the HE;; and the HE;, modes
because the coupling is stronger to the TE mode than to
the TM mode.

In the previous discussion, only the fiber-to-microsphere
mode coupling is examined. It is appropriate, however, to
consider also the microsphere-to-fiber light coupling. In
the latter process, there are more taper modes available
for the microsphere WGMs to excite. The coupling
strengths are calculated for all modes with propagation
constants between those of the HE;; and HE,, modes as
functions of the radius as in FMC. The results for MFC
are shown in Fig. 3. The maximal coupling strengths indi-
cated in Fig. 3 are different from those indicated in Fig. 2.
This is because the tunneling probability between two
waveguides is the same in both tunneling directions only
when the two modes are phase matched [25]. This is anal-
ogous to the unequal probabilities for particle tunneling
back and forth between two potential wells with unequal
energy levels. For comparison, the fundamental micro-
sphere TE and TM modes are selected to be individually
coupled to the taper modes (see Fig. 3(a) and (b), respec-
tively). In both cases, the strongest coupling strength at a
small taper radius is for the HE;; mode. As the taper radius
is increased, the next maximal coupling coefficients corre-
spond to the TE( (in Fig. 3(a)) and the TMy; (in
Fig. 3(b)) with the HE,; taper mode in third place. A super-
position of the TEy;, HE»;, and TM,; fiber modes forms
the LPy; mode in the linearly polarized (LP) approxima-
tion. The reason that coupling from the TE microsphere
modes to the TEy; mode is noticeably stronger than to
the HE,; mode is that all of the TE(,’s power is in the
transverse direction. The strength of the coupling from
the TM microsphere mode to the HE,; and TM,; modes
is almost identical because both of these fiber modes have
both transverse and longitudinal components. Note in
Fig. 3(a) and (b) that if a radius is selected at ~2.5 um
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Fig. 3. Losses to higher-order fiber modes. (MFC for fiber and micro-
sphere in contact, Rgppere =300 pm, 4 =1550nm, ny=n,=1.44,
n, =1.00, ¢ =1, I — |m| = 0.) The modes are listed in order of decreasing
propagation constant. (a) Coupling from fundamental microsphere TE
mode to higher-order fiber modes. (b) Coupling from fundamental
microsphere TM mode to higher-order fiber modes.

(the HE|; phase-matched point indicated by lines A and
B in Fig. 2), the strength of the coupling to the fiber
TEy,, HE,;, and TM; modes is very close to that of the
HE,; mode.

With MFC, coupling to the higher-order modes (HE»,
HE;;, and EH;;) of the taper occurs at larger radii (3.0-
4.0 um) and exhibits different behavior with respect to the
TE and TM modes of the microsphere. In the case of TE
mode coupling (Fig. 3(a)), the third highest maximum cou-
pling strength corresponds to the EH;; taper mode, fol-
lowed by the HE, and the HE;3;. There are interesting
differences in the case of the TM mode coupling to the
higher-order fiber modes (Fig. 3(b)). First, note that the
third highest maximum coupling strength corresponds to
the HE, taper mode, followed by the HE;3; and the
EH;;, a sequence that is completely different from TE
mode coupling (Fig. 3(a)). Second, not only is the order
of the coupling strength between these modes different
from the TE mode coupling, but there is also a functional
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crossing of coupling strengths for these three modes within
the radius range of ~2.5-3.2 pm.

The coupling is strongly dependent on both micro-
sphere size and wavelength. The dependence of FMC on
microsphere size for the HE; and HE, modes is shown
in Fig. 4(a) and (b), respectively. The figures show that
as the microsphere size is decreased the optimal taper
radius decreases while the coupling strength increases.
The optimal taper radius decreases because the propaga-
tion constant of the microsphere decreases with smaller
sizes. The taper size must then be decreased for better
phase matching. The coupling coefficients increase with
decreasing microsphere size because the spatial overlap
of the fields is increased. The dependence of FMC on
wavelength for the HE;; and HE;, modes is shown in
Fig. 5(a) and (b), respectively. These figures show that
as the wavelength increases from 800 nm to 1900 nm the
optimal taper radius increases, as does the coupling
strength. The coupling strength increases because the eva-
nescent portions of the modes increase. The optimal taper
radius increases because the taper size must be increased
to maintain a small amount of phase mismatch with the
WGM. This is because increasing the wavelength causes
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Fig. 4. Optimal fiber radius for different microsphere radii. (Fiber and
microsphere in contact, A=1550nm, n,=n,=144, n,=1.00, ¢=1,
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Fig. 5. Optimal fiber radius for different wavelengths. (Fiber and
microsphere in contact, Ryphere =300 pm, n,=n,=1.44, n,=1.00,
qg=1,1—|ml=0.)

a larger decrease in the propagation constant for the fiber
mode than that for the microsphere mode, as the wave-
length of the light is closer to the size of the fiber than
to the size of the microsphere.

Although the actual coupling is strongly dependent on
microsphere size and wavelength, the ratio of the optimal
fiber radius to the phase-matched fiber radius is only
weakly dependent on the size of the microsphere and the
wavelength. For all cases in Figs. 4 and 5, the optimal
radius is roughly 70% of the phase-matched radius. Simi-
larly, in all cases the coupling strength is roughly doubled
by using the optimal taper radius rather than the phase-
matched radius.

The coupling to higher-order microsphere modes is also
of interest because it is unlikely that the fundamental mode
is excited in an experiment. Calculations indicate that for
higher radial order modes the optimal taper radius is smal-
ler, while the coupling strength at the optimal taper radius
is larger. For example, for a microsphere of radius 300 um
and wavelength 1550 nm, the maximum coupling from the
HE,; fiber mode to the fundamental TE microsphere mode
is |k|* = 3.6 x 10 with a taper radius of 1.68 um, as seen
in Fig. 2. The maximum coupling to a mode of fundamen-
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tal polar order and third radial order (¢ = 3) is calculated
to be |&|> = 5.6 x 107> with a fiber radius of 1.48 pm. This
is a result of the higher radial order modes having lower
propagation constants and larger evanescent fractions.
Coupling to higher polar order modes results in weaker
coupling, but only a very small change in the optimal taper
radius. For example, the maximum coupling to a mode of
fundamental radial order and second polar order
(I—|m| =2) is calculated to be |&|*=1.4x 107> with a
taper radius of 1.68 um. The coupling is weaker because
the higher-order microsphere modes have a wider polar
distribution, resulting in less spatial overlap with the fiber
mode. The optimal taper radius is shifted very little because
the difference in propagation constants is small between
modes of different polar order.

The discussion of optimal taper radius is not complete
without some remarks about the polarization of the
modes. In FMC, the orientation of the HE;; and HE,
fiber fields is used to choose whether the coupling is to
TE or TM microsphere modes. For coupling to TE micro-
sphere modes, the orientation is chosen such that the
transverse electric fields are tangent to the surfaces of
the fiber and microsphere within the interaction region.
For coupling to TM modes, the orientation is chosen so
that the electric fields are perpendicular to the surfaces
in the interaction region. In MFC, the orientations are
chosen in the same manner. However, coupling is possible
for modes whose electric field orientations are in-between
being perfectly perpendicular and tangent to the surfaces
in the interaction region. In fact, none of the modes can
be oriented completely as in either of these situations. This
is because the modes of the taper are not perfectly linearly
polarized. Although the orientation of the fields can be
used to cause the coupling to be primarily to microsphere
TE or TM modes, the orientation can never entirely elim-
inate coupling to either of these families of modes. Calcu-
lations, not shown here, indicate that the coupling to the
orthogonal polarization is two and a half orders of mag-
nitude weaker than the coupling to the primary
polarization.

4. WGM spectra

The microsphere WGM spectra are calculated by
numerically integrating the field overlap integral in Eq.
(4) under less than ideal conditions. The condition of a
fiber taper offset from the equatorial plane of the micro-
sphere is considered. In this configuration, non-zero over-
lap is possible between the fiber mode and odd polar order
(antisymmetric) modes of the microsphere. Thus, these
modes couple in addition to even polar order (symmetric)
modes that couple when the alignment is perfect. Recall
that in a perfectly spherical microsphere the polar modes
are frequency degenerate. This degeneracy is broken by
introducing an eccentricity to the microsphere. The fre-
quencies of WGMs in such microspheres are given by
[4,26]

i
Vim =0

1 I+1/2\'"* . (1—|m|
Z L A+ R b
l—|—2+aq( 3 ) € > ,
(5)

where i denotes TE or TM, 6 = ¢/2nRn, is the micro-
sphere’s nominal free-spectral range, where Ry is the equa-
torial radius of the microsphere. 4, is the absolute value of
the ¢gth zero of the Airy function and the different forms of
A" give the polarization shift of the WGM frequencies:
AT =nm? = 1)""2, and A™ =n"'(n® = 1)""2, where
n = ny/n,. For the last term in Eq. (5), the upper sign is used
for an oblate spheroid and the lower sign for the prolate
case, where the eccentricity is given in terms of the ellipsoid
major and minor radii R and R_ as & = (R} — R*)/R3.
In Fig. 6, the WGM wavelengths within one free-spec-
tral range are displayed, under the condition of misalign-
ment of the taper modes with the WGMs of the
equatorial plane. The radius has been chosen to optimally
couple the HE;; taper mode to the fundamental TE micro-
sphere mode. The offset from the equatorial plane has been
chosen to be 0,4 = 11/76. In Fig. 6, ¢ ~ 0.09, so major and
minor radii differ by about 5%. The wavelengths are
grouped according to different modes of radial order g.
Within each grouping, modes of eight polar orders are
shown (ie., /—|m|=0, 1,....7), with the polar order
increasing with increasing wavelength. Some of these
modes are not visible on the scale of the coupling selected
in the figure because of their low coupling coefficients. It is
clear that for an offset fiber, higher polar order modes can
have stronger coupling than the fundamental polar order
mode. In this case, the polar order modes with / — |m| =2
have the strongest coupling. This is because of the choice of
offset. For other offsets, different polar order modes have
stronger coupling. In the case of no lateral offset, the fun-
damental polar order modes have the highest coupling.
This is followed by weaker coupling for each successive
even higher polar order mode. For clarity, only a small
fraction of the actual number of modes is shown. Because
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Fig. 6. WGM TE spectrum. (FMC for fiber and microsphere in contact,
R; =300 pm, R, = 1.68 pm, prolate with & = 0.29, Oy = 1/76.) For ¢ =1,
1 =1730; for ¢ =2, /=1713; for ¢ =3, [ = 1699.
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this graph is over one free-spectral range, modes of higher
radial order would begin again from the left with ¢ =4.
These modes continue to wrap around the plotted wave-
length range. Higher polar order modes (/ — |m| > 7) would
also overlap with modes of different radial order.

5. Conclusions

The calculations of optimal fiber radii indicate that the
highest coupling from a fundamental fiber mode to a fun-
damental microsphere mode is achieved with a fiber that
has a taper radius somewhat smaller (about 30%) than that
for perfect phase-matching. For a taper of this size, the
coupling is about twice as strong as when phase-matched.
Another advantage of using the smaller size taper is that
losses to higher-order fiber modes are substantial for
phase-matched sizes. Also, the calculations indicate that
coupling to the microsphere TE modes is stronger than
to the TM modes. This is a result of the longitudinal field
overlap present when coupling into TM modes. With
increasing wavelength, the optimal taper radius decreases
slightly while the coupling coefficients increase. Calcula-
tions show that the optimal fiber radii are almost
unchanged when the surrounding medium has a higher
than unity index of refraction. For an external index of
1.33, the optimal fiber radius for the HE;; mode is the
same, while the coupling strength is increased by almost
exactly an order of magnitude.

In all of the calculations in this work, the microsphere
and fiber are assumed to be in contact; if they were not, all
of the coupling coefficients would be reduced. For example,
coupling of 1550 nm light from the HE;; fiber mode to the
fundamental TE microsphere mode is |k|° =3.6 x 1073
when fiber and microsphere are in contact (300 pm radius
sphere, see Fig. 2). For separation distances of 0.2 pm and
0.4 um the coupling strengths are reduced to 7.2 x 10~*
and 1.4 x 10~ respectively. This is because of the exponen-
tial decay of the modes’ evanescent fields. In addition, some
of the relative coupling strengths between the modes would
be different. This is because some higher-order modes have
longer decay lengths than lower-order modes.

The calculation of WGM spectra under the offset taper
condition shows that there are many possible modes that
can be coupled within one free-spectral range of the
microsphere. The calculated values of the coupling coeffi-
cients are consistent with experimental data [8,27]. For
example, for the overcoupled 830 nm pump mode in
Fig. 4 of Ref. [8] (300 um radius sphere, 1.5 um radius
fiber), a value of 7= 1.5x 107 is found from the exper-
imental throughput trace.' It is close to the theoretical
peak value of |&|> for 800 nm, as in Fig. 5(a), but with

! The dip depth is M = 0.45 and the dip width is Av = 30 MHz. Because
this is an overcoupled mode, the dip depth corresponds to a coupling loss
to intrinsic loss ratio of X = 6.6. The dip width indicates a quality factor of
0=12x 107. The transmission is then found to be (n,=1.44)

_ 4mnR, __ -3
T= 00H) = 1.5x107".

g = 2. This is reasonable because modes of several radial
orders are commonly excited in an experiment. With the
fiber laterally offset from, but still parallel to the equato-
rial plane of the microsphere, the coupling to the funda-
mental polar order mode is not as strong as to some of
the higher polar order modes. This is also in agreement
with experimental data [27] and is a result of higher polar
order modes having greater polar extent. The inclusion of
eccentricity and lateral offset enables the numerical calcu-
lations to be directly compared to experimental data. All
calculations are valuable both for designing experiments
and interpreting the resulting data. This research is being
extended to sphere-to-sphere coupling for application to
coupled-resonator induced transparency and absorption
theory [28] and experiments [29].
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