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Abstract

The transmission of a ring resonator, whose nonlinear medium is a beam of resonant two-level atoms with transit time
shorter than their spontaneous lifetime, exhibits multistability. The stability of multiple longitudinal modes in such a system
is analyzed for cavities tuned both to resonance and midway between resonances, with atoms injected in an eigenstate or in
superposition states. Regions of instability are identified and are usually found to be locally associated with the multiple

Ž .segments of the transmission function state equation that have negative slope. However, in some cases, the transmission is
found to be globally unstable; the instability region covers a large continuous range of input field. This is because, in
contrast to the usual multimode instability, the imaginary part of the field contributes even when atoms and cavity are both
resonant with the driving laser. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 42.65.Sf; 42.65.Pc; 42.50.Gy
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1. Introduction

When an optical ring resonator contains a medium
consisting of a monoenergetic beam of two-state
atoms, and the transit time of these atoms through
the cavity mode is smaller than their spontaneous
lifetime, light transmitted through the nonlinear res-

w xonator can show multistability 1,2 . This is a result
of the atoms’ Rabi cycling in transit, and is essen-
tially identical to the behavior found in the meso-

w xmaser 3–6 . Consider atoms injected in their ground
state and neglect spontaneous emission; atoms pass-
ing through the cavity mode will experience an

Ž .effective pulse. If this pulse has area 2nq1 p ,
where n is an integer, the atoms will carry energy
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out of the resonator, thereby reducing the optical
transmission. However, atoms seeing a 2np pulse
return all absorbed energy to the resonator mode via
stimulated emission, and in this case the transmission
is that of an empty resonator. Since the effective
pulse area depends on the intracavity field, the result
is an input–output curve that can show bistability,
multiple regions of bistability, or multistability, de-
pending on the density of the atomic beam and the
finesse of the resonator.

The multistability would be severely degraded by
using a beam with a large spread of atomic speeds,
but a velocity-selected beam with a relative velocity
spread of 10% gives essentially the same results as a

w xmonoenergetic beam 1,3 , so the beam will be as-
sumed monoenergetic here. Spontaneous emission

w xalso degrades the multistability 1,2 , so we will take
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the atomic transit time to be much shorter than the
spontaneous lifetime. Likewise, a Gaussian trans-
verse dependence of the resonator mode somewhat

w xreduces the multistable behavior 1,2 ; for simplicity,
in this study we will treat the mode as a hard-edged
plane wave, so that an atom passing through sees an
effective square pulse. The atomic medium is there-
fore homogeneously broadened due to the finite tran-
sit time.

The steady state, single-mode stability properties,
and related dynamical behavior have been studied
for such transit-multistable systems for the cases of

w xatoms injected in either the ground 1–5 or the
w xexcited 3,6 state. The latter case is essentially the

same problem as that of the monovelocity beam
w x w xmaser 7–9 . All of this semiclassical analysis 1–9

applies not only to macroscopic systems, but also
down to the mesoscopic scale, where the number of
atoms in the resonator is perhaps a few hundred; it
is, however, inappropriate for few-atom systems such
as the micromaser.

In this work, we consider the steady-state behav-
ior and multimode stability of the nonlinear res-
onator with atoms injected not only in the ground
and excited energy eigenstates, but also in coherent
superpositions of the two eigenstates, specifically
those produced by the interaction of ground-state
atoms with an effective pr2 or 3pr2 pulse by
passing through a resonant preparation beam just

Žbefore entering the resonator mode. Steady-state
response of the micromaser with similar coherent

w x .injection was studied in Refs. 10–12 . These super-
positions have equal probabilities for finding the
atoms in either eigenstate, but the resonator transmis-
sion is very different from the effectively empty-cav-
ity transmission that would result from the injection
of equal numbers of ground-state and excited-state
atoms. For all injected states, multistability is found
and the regions of instability are identified; those
regions show a qualitative dependence on the state of
the injected atoms. Even when both the atoms and
the cavity are resonant with the driving laser, the
imaginary part of the field contributes to the instabil-
ity. This stands in strong contrast to the usual case of
multimode instabilities with homogeneously broad-

Ž .ened, but non-transiting, atoms ‘‘stationary’’ atoms .
In the analysis that follows, the atoms are as-

sumed to be resonant with the incident light in all

cases. The model, including the steady-state solu-
tions for a resonant cavity, is presented in Section 2.
The linear stability analysis of this resonant-cavity
model is the subject of Section 3. The model for a
cavity driven midway between longitudinal modes is
given in Section 4, along with an extension of the
stability analysis to the multimode case. Section 5
contains a discussion of our results, and conclusions
are given in Section 6.

2. Model and steady-state response

w xAlthough our earlier theoretical approach 1,2 is
w xfully equivalent to that of Refs. 3–6 , we will adopt

the latter approach here because it lends itself more
readily to stability analysis. The evolution of the
system is described by the following Maxwell–Bloch
equations for both atoms and cavity resonant with
the field:

E E x tŽ .r
q Õ T ,t s w T ,t , 1Ž . Ž . Ž .ž /E t E T t

E E x tŽ .i
q u T ,t s w T ,t , 2Ž . Ž . Ž .ž /E t E T t

E E x tŽ .r
q w T ,t sy Õ T ,tŽ . Ž .ž /E t E T t

x tŽ .i
y u T ,t , 3Ž . Ž .

t

td x t 4CŽ .r
syk x t yyy Õ T ,t dT ,Ž . Ž .Hrd t t 0

4Ž .

td x t 4CŽ .i
syk x t y u T ,t dT . 5Ž . Ž . Ž .Hid t t 0

Ž . Ž .Eqs. 1 – 3 describe the behavior of the atoms,
Ž . Ž .and Eqs. 4 and 5 that of the cavity field. The

Bloch vector transverse components Õ and u are
proportional to the real and imaginary parts of the
atomic polarization, and the longitudinal component
of the Bloch vector, w, is proportional to the popula-
tion inversion. The dimensionless intracavity field is
denoted by xsx q ix sVt , where V is the com-r i

plex intracavity Rabi frequency and t is the transit
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Ž . Ž .time. Eqs. 1 – 3 include no spontaneous decay
Žterms because t<t where t is the spontaneoussp sp

.lifetime ; thus the state of an atom is changed only
by interaction with the cavity field, which can vary

Ž . Ž .in time, as shown in Eqs. 4 and 5 . The state of an
atom will vary with position as the atom passes
through the mode, even if the cavity field is constant
Ž .steady state , and this is represented by the T-depen-
dence of u, Õ and w. An atom located a distance z
into the mode has been in the mode for a time
TszrÕ , where Õ is its speed; T satisfies 0FTFa a

t . The cavity field decay rate is given by k. The
dimensionless incident field, y, taken to be real, is

Ž .the product of the transit time and the real value
that the steady-state intracavity Rabi frequency would
take in the absence of atoms; note that just as y and
x give the intracavity field of the empty and filled
cavities when multiplied by the same constant, they
also give the incident and transmitted fields when
multiplied by another constant. The cooperativity C
is, as usual, one-half the ratio of the atomic loss to
the resonator loss; however, in this system, the domi-
nant atomic loss is escape from the resonator mode,
determined by the transit time rather than the sponta-
neous lifetime. This means that CsC tr4t , wherest sp

C is the usual cooperativity value for the samest

number of stationary atoms interacting with the cav-
ity mode.

Ž . Ž .In steady state, Eqs. 1 – 5 become

d
Õ T sV w T , 6Ž . Ž . Ž .

dT

d
w T syV Õ T , 7Ž . Ž . Ž .

dT

t4C
ysxy Õ T dT , 8Ž . Ž .H

t 0

Ž .where x thus V is taken to be real, and u to be
Ž .zero, without loss of generality. Eq. 8 is the

input–output relation, or state equation.
The form taken by the state equation is deter-

mined by the state of the atoms as they enter the
cavity mode. Atoms prepared in an eigenstate have
Ž . Ž .Õ 0 s0 and w 0 s.1, where the upper sign is for

Žinjection of ground-state atoms prepared by a 0p

.pulse and the lower sign for injection of excited-state
Ž .atoms prepared by a p pulse . Thus

Õ T s.sin V T , 9Ž . Ž . Ž .
w T s.cos V T , 10Ž . Ž . Ž .
and

1ycos x
ysx"4C . 11Ž .

x

Atoms injected in the two superposition states
Ž . Ž .considered here have w 0 s0 and Õ 0 s.1, be-

Ž . Žing prepared by pr2 upper sign or 3pr2 lower
.sign pulses, giving

Õ T s.cos V T , 12Ž . Ž . Ž .
w T s"sin V T , 13Ž . Ž . Ž .
and

sin x
ysx"4C . 14Ž .

x

The steady-state multistable transmission repre-
Ž . w xsented by Eq. 11 has been analyzed in Refs. 1–6 .

Ž .Similar multistability is exhibited by Eq. 14 , and
both cases are discussed further in Section 5.

3. Linear stability analysis

Ž . Ž .We now consider Eqs. 1 – 5 , and linearize about
Ž . Ž . Žthe steady-state solutions Õ T , w T and x with

.us0 and x s0 , that were found above. We take yi

to be real, but must allow the perturbed x to be
complex. With the usual ansatz, namely that the
time dependence of the perturbations is exponential
with a complex eigenvalue l, we have:

Õ T ,t sÕ T qd Õ T ,t sÕ T qd Õ T elt ,Ž . Ž . Ž . Ž . Ž .
15Ž .

u T ,t sd u T ,t sd u T elt , 16Ž . Ž . Ž . Ž .

w T ,t sw T qd w T ,t sw T qd w T elt ,Ž . Ž . Ž . Ž . Ž .
17Ž .

x t sxqd x t sxqd x elt , 18Ž . Ž . Ž .r r r

x t sd x t sd x elt . 19Ž . Ž . Ž .i i i
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Ž . Ž .The linearized Eqs. 1 – 5 for the perturbations
are then written as follows:

d 1
lq d Õ T y d x w T qxd w T s0,Ž . Ž . Ž .rž /dT t

20Ž .

d 1
lq d u T y d x w T s0, 21Ž . Ž . Ž .iž /dT t

d 1
lq d w T y d x Õ T qxd Õ T s0,Ž . Ž . Ž .rž /dT t

22Ž .

t4Ck
lqk d x y d Õ T dTs0, 23Ž . Ž . Ž .Hr

t 0

t4Ck
lqk d x y d u T dTs0. 24Ž . Ž . Ž .Hi

t 0

Ž . Ž . Ž .In Eqs. 20 – 24 , the initial at injection Bloch
Ž . Ž .vector perturbation is zero, i.e., d Õ 0 sd u 0 s

Ž . Ž . Ž .d w 0 s0. Eqs. 20 and 22 can be combined,
Ž .using Eq. 6 and the relation xsVt , to give a

Žclosed second-order differential equation for d w the
.prime indicates a derivative with respect to T ,

d wY q2ld wX q V 2 ql2 d wŽ .

d xr
sy 2V w T qlÕ T , 25Ž . Ž . Ž .

t

which can easily be solved because the homoge-
neous solution is a linear combination of

ylT Ž . ylT Ž .e cos V T and e sin V T , and the right-hand
Ž .side can be written in the form A sin V T q

Ž .B cos V T , where A and B are determined by the
Ž . Ž .state of the injected atoms, i.e., by Eqs. 9 and 10

Ž . Ž . Xor Eqs. 12 and 13 . The initial conditions on d w
Ž . Ž . Ž .are found from Eq. 22 , using Eq. 9 or Eq. 12 .

For the case of injection of eigenstate atoms
Žprepared by a pulse of area 0 ground state, upper

. Ž .sign or p excited state, lower sign we solve Eq.
Ž .25 to find

d xr ylTd w T s" 1ye sin V T . 26Ž . Ž . Ž . Ž .
lt

If the injected atoms are prepared in a superposition
Ž .state by a pulse of area pr2 upper sign or 3pr2

Ž . Ž .lower sign , solution of Eq. 25 gives

d xr ylTd w T s" 1ye cos V T . 27Ž . Ž . Ž . Ž .
lt

Ž . Ž . Ž .Now, substituting Eq. 26 into Eqs. 20 and 21
results in, for eigenstate injection,

d xr ylTd Õ T s. 1ye cos V T , 28Ž . Ž . Ž . Ž .
lt

d xi
d u T s. V sin V TŽ . Ž .�2 2t V qlŽ .

ylTql cos V T ye , 29Ž . Ž .4
Ž . Ž . Ž .or substitution of Eq. 27 into Eqs. 20 and 21 for

superposition-state injection gives

d xr ylTd Õ T s" 1ye sin V T , 30Ž . Ž . Ž . Ž .
lt

d xi
d u T s" l sin V TŽ . Ž .�2 2t V qlŽ .

ylTyV cos V T ye . 31Ž . Ž .4
Ž . Ž . Ž . Ž .Inserting Eqs. 28 and 29 or Eqs. 30 and 31

Ž . Ž .into Eqs. 23 and 24 then results in the following
Ž .equation for the eigenvalue l using xsVt :

4C
lsyk 1. J x ,lt , 32Ž . Ž .m2 2 2x ql t

where association with the real part of the perturbed
Ž Ž ..field Eq. 23 is denoted by ms1, and association

Žwith the imaginary part of the perturbed field Eq.
Ž ..24 is denoted by ms2. Instability occurs when
the eigenvalue l has a positive real part.

For eigenstate injection, the functions J take them

form

J x , ltŽ .1

1 l2t 2
ylt ylts1ye cos xy 1ye q 2ž /lt x

=x sin x , 33Ž .
sin x

yltJ x , lt scos xye ylt . 34Ž . Ž .2 x
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Ž . Ž .Eqs. 32 – 34 are exactly the conditions first found
w xin Ref. 3 .

Superposition state injection leads to the follow-
ing forms for J :m

lt
yltJ x , lt s qe sin xŽ .1 x

1 l2t 2
ylty 1ye q x cos x ,2ž /lt x

35Ž .

x 2 ql2t 2 x lt
yltJ x , lt s y e y cos xŽ .2 xlt lt x

ysin x . 36Ž .
Ž . Ž . Ž .Eqs. 35 and 36 , together with Eq. 32 , represent

a new set of conditions that specify the stability of
the resonator with atoms injected in superposition
states prepared by pr2 or 3pr2 pumping.

4. Multimode analysis

Multimode instabilities in optically bistable sys-
tems have been of theoretical and experimental inter-

w xest for some time now 13–16 . In the transit-multi-
stable, or mesomaser, system, the single-mode insta-

w xbility has been studied in Refs. 3–6 . In the stability
analysis above we have extended the consideration
to include the case of injection of atoms in superpo-
sition states. We now expand the above analysis to
show the multimode character of the instabilities. To
do this, we employ a method first used by Carmichael
w x17 to relate instabilities of the nonlinear cavity
driven midway between resonances to the regions of
negative slope in the state equation of the cavity
driven on resonance. Two major differences between
our work and earlier studies of multimode instability
will be apparent, both deriving from the fact that our
nonlinear medium is a beam of fast atoms. First, we
will have multiple regions of negative slope; second,
we will have the possibility of J -type instability,2

i.e., instability related to the imaginary part of the
field. The fact that the multimode analysis depends

Ž Ž . Ž ..on the same functions J Eqs. 33 – 36 that applym

in the single-mode case is another example of the

intimate link between single-mode and multimode
w xinstabilities in general systems 15 .

We assume two of the ring resonator’s mirrors to
be partially-transmitting, with reflectivity R, as-

Ž .sumed to be high 1yR<1 ; the time for light to
make one circuit of the ring is the round-trip time t ,r

Žand so the cavity field loss rate is given by ks 1y
.R rt . For the case of the cavity driven midwayr

Ž . Ž .between resonances, Eqs. 4 and 5 do not properly
describe the evolution of the intracavity field be-
cause they are derived assuming a small round-trip
change in the field and cannot account for the p

round-trip phase accumulated in this case. Neverthe-
less, the stability analysis presented above also ap-
plies to this particular non-resonant cavity case. To
show this, we use the cavity boundary conditions to
write a map equation giving the real part of the
intracavity field, just after passing through the atomic
beam and before reaching the exit mirror, in terms of
its value one round trip earlier:

xqd x tqt s 1yR y"R xqd x tŽ . Ž . Ž .r r r

t4C
q 1yR Õ TŽ . Ž .H

t 0

qd Õ T ,tqt dT , 37Ž . Ž .r

where the upper sign applies when the driving laser
is resonant with a cavity mode, and the lower sign
reflects the p round-trip phase accumulated when
the driving laser is halfway between modes. For the

Ž .resonant case, the steady-state solution of Eq. 37
Ž .reproduces the state Eq. 8 ; however, for the mid-

mode case, the steady-state solution gives the follow-
ing state equation:

t1yR 1yR 4C
Xy ' ysxy Õ T dT(x ,Ž .H

2 2 t 0

38Ž .

showing that the transmission depends linearly on
the input, because the atomic loss is now negligible
compared to the cavity loss. In this case, a much
larger input field y is needed to produce the same

Žintracavity field x as in the resonant case. Here, if
x is interpreted to be the transmitted field, y is the
input field; if x is taken to be the intracavity field
with atoms present, yX is the field inside the empty
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. Ž .cavity. From Eq. 37 , the perturbations satisfy the
following:

4C
lt re d x t s" Rd x t q 1yRŽ . Ž . Ž .r r

t

=
t

d Õ T ,t dT , 39Ž . Ž .H
0

Ž .where the exp lt factor that would multiply ther

small second term on the right-hand side has been
replaced by its zeroth-order value, "1. Substituting
Ž ." 1qlt for the same term on the left-hand side,r

corresponding to the stability condition being
< Ž . < Ž .exp lt -1, gives Eq. 23 since the time t isr

arbitrary and may be taken to be zero. A similar
analysis for the imaginary part of the field leads to

Ž . Ž . Ž .Eq. 24 , showing that Eqs. 23 and 24 apply for
mid-mode tuning as well as on cavity resonance.
Thus both resonant and mid-mode tuning lead to Eq.
Ž .32 for the eigenvalue l.

In the limit of perfectly reflecting mirrors, the
Ž .solution of Eq. 39 ,

inp
Ž0.exp lt s"1´l s ,Ž .r n

tr

ns0, "1, "2, PPP , 40Ž . Ž .

simply defines the longitudinal modes of the cavity,
where n gives the detuning of a given mode from the
driving laser in units of half of the cavity’s free

Ž .spectral range. Since the plus sign in Eq. 40 de-
notes resonance of the laser with a certain mode, the
resonant mode is labeled with ns0 and other modes
with ns"2, "4, etc. When the cavity is driven
midway between resonances, the modes are labeled
with ns"1, "3, etc. For highly reflecting but not
perfect mirrors, the light-atom interaction will result

Ž .in small perturbation of the eigenvalues in Eq. 40
to

inp 4C
l s yk 1. J x , l t , 41Ž . Ž .n m n2 2 2t x ql tr n

which can be solved to lowest significant order by
substituting the unperturbed value of l from Eq.n
Ž . Ž .40 on the right-hand side of Eq. 41 . Thus the
condition for instability of the mode n, detuned from

the driving laser by nr2 cavity free spectral ranges,
is that the eigenvalue have a positive real part, or:

4C inpt
Re 1. J x , -0, 42Ž .m2 2 2 ž /tn p t r2x y 2tr

where again, the upper sign denotes either 0 or pr2
excitation and the lower sign either p or 3pr2
excitation, using the corresponding functional forms

Ž . Ž .for J , Eqs. 35 and 36 for superposition statesm
Ž . Ž .and Eqs. 33 and 34 for eigenstates. Application of

Ž . Ž .Eq. 42 to the resonant mode ns0 gives the
instability condition

4C
1. J x , 0 -0, 43Ž . Ž .m2x

which, upon inspection of the state equations, Eq.
Ž . Ž . Ž . Ž .11 and Eq. 14 , and using Eqs. 33 – 36 for J ,m

reduces, for ms1, in every case of eigenstate or
superposition-state injection, to the relation

d y
-0. 44Ž .

d x

Ž .For ms2, Eq. 43 leads to

y
-0, 45Ž .

x

for eigenstate injection, or

y 4C
-" , 46Ž .

x x

for superposition-state injection. Thus the resonant
Ž .mode is unstable from the real part of the field in

all regions of negative slope of the state equation,
Ž .and also from the imaginary part of the field for all

segments of the state equation satisfying the condi-
Ž . Ž .tions on yrx in Eqs. 45 and 46 . We show below

how the instabilities of adjacent modes tend to be
associated with these resonant-mode instabilities, oc-
curring at approximately the same values of the
intracavity field x. For the bistable system with

w xnon-transiting atoms, Carmichael 17 showed the
association with regions of negative slope, or J1

Ž .instability, as in Eq. 44 . We will also see a relation
Ž . Ž .to the J regions, Eqs. 45 and 46 .2
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5. Results and discussion

To illustrate that values of x corresponding to
regions of negative slope in the state equation of the

Ž .driven mode ns0 also determine the regions of
Žinstability both in the resonant cavity modes of even

.n and in the cavity driven midway between reso-
Ž .nances modes of odd n , we will here consider the

sidemodes ns"1 and ns"2 only. For the multi-
stable system, there are many negative-slope regions
in the transmission function, as illustrated in Fig. 1
for the case of ground-state atom injection. The state

Ž .Eq. 11 , with the upper sign indicating preparation
by a 0p pulse, is plotted in Fig. 1 for Cs5. Rabi
cycling of the atoms transiting through the field
mode in less than a spontaneous lifetime produces

Ž .multistability near ys13 in addition to several
regions of negative slope. For the state equation of

Ž .Fig. 1, the regions in the trt yx plane corre-r
Ž .sponding to instability, as given by Eq. 42 , are

shown in Fig. 2. Instability may be observed in a
positive-slope branch of the resonant-cavity trans-

Žmission when the even-n unstable regions dashed
.lines, for ns"2 extend outside the light vertical

lines that indicate the negative-slope regions. The
regions between the light vertical lines are the J -un-1

stable regions of the resonant mode, according to Eq.
Ž .44 ; for ground-state injection the resonant mode
has no regions of J instability because the state2

Ž . Ž .Fig. 1. Output field x versus input field y for injection of
Ž .ground-state atoms 0p preparation ; Cs5.

Fig. 2. Instability boundaries for Cs5 and 0p preparation, as in
Fig. 1. Light lines correspond to ns0; heavy solid and dashed
lines indicate ns"1 and "2, respectively. The x-values be-
tween the ns0 lines are the regions of negative slope in Fig. 1.
The fingers coming up from the x axis are J -type unstable1

regions, and the closed curves are J -type unstable regions.2

equation of Fig. 1 never enters the second or fourth
Ž .quadrants, as required by Eq. 45 . Note in Fig. 2

that for certain values of trt , the positive-sloper

branches adjacent to the first negative-slope region
become unstable from excitation of the adjacent

Žcavity modes. The J curve from the real part of the1
.field extends to the upper positive-slope branch and

Ž .the J curve from the imaginary part of the field2

extends to both upper and lower branches. For the
cavity driven midway between resonances, the state
equation will be a straight line of positive slope, as

Ž .in Eq. 38 , and so the entire region within the J1
Ž .and J curves for ns"1 heavy solid lines repre-2

sents an observable instability. Note in particular
Ž .here that both types J and J of instability are1 2

seen for resonant and off-resonant driving, unlike the
w xsingle-mode instability in the mesomaser 3–6 and

multimode instability in the usual stationary-atom
bistable system, which show no J -type instability.2

The horizontal axis in Fig. 2 is the intracavity
Ž .Rabi frequency in radiansrs times the transit time,

and the vertical axis is the cavity’s free spectral
Ž .range in Hz times the transit time. Thus points on a

Ž .y1straight line through the origin with slope np

correspond to the Rabi frequency being equal to nr2
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times the longitudinal mode spacing. These are ap-
proximately the slopes of the J fingers in Fig. 2, as1

would be expected from the weak-sideband-gain in-
terpretation of multimode instability. This interpreta-
tion shows that the gain produced in strongly-driven
atoms, at a detuning of approximately the Rabi
frequency, can lead to instability if a cavity mode is

Žpresent in the gain region. See summary in Ref.
w x .15 , and references therein. Consideration of the

Ž .imaginary part of Eq. 41 will show that mode
pulling is not a major concern for the modest values
of C of interest here. Therefore we can estimate the
fundamental frequency of oscillation of the instabil-
ity to be equal, for resonant driving, to the cavity’s
free spectral range, the frequency difference between
mode ns0 and modes ns"2. In Fig. 2, at xs
6.75, the point at trt s0.5 is on the border of ther

unstable region; the frequency of oscillation would
Ž . w xthus be 2prt s3.14rt radiansrs . In Ref. 3 , ther

frequency of the single-mode instability for Cs5 at
xs6.75 was found to be 3.06rt . Again, as noted

w xbefore 15 , the close connection between single-
mode instability and multimode instability is re-
flected in the similarity of frequencies, even though
the single-mode instability occurs in the bad-cavity
limit. Since our instability occurs when trt is ofr

order unity, the system is in the good-cavity limit, as
expected for multimode instability; the experimental
significance of the size of trt needed for observa-r

Ž . Ž .Fig. 3. Output field x versus input field y for injection of
Ž .excited-state atoms p preparation ; Cs5.

Fig. 4. Instability boundaries for Cs5 and p preparation, as in
Fig. 3. Light lines correspond to ns0; solid lines for J , denoting1

regions of negative slope in Fig. 3, and dash-dot lines for J ,2

corresponding to the second-quadrant part of Fig. 3. Heavy solid
and dashed lines indicate ns"1 and "2, respectively, where the
fingers coming up from the x axis are J -type unstable regions,1

and the other curves enclose J -type unstable regions.2

tion of these various multimode instabilities will be
discussed in Section 6.

Ž .Fig. 3 shows the state Eq. 11 , with the lower
sign, for the case of excited-state atomic injection
Ž .p-pulse preparation ; again, Cs5. The fact that the
part of the state equation with y-0 is unphysical is
reflected in the J -type instability region for the2

Ž .resonant mode ns0 indicated by the light vertical
dash-dot line in Fig. 4. Note in Fig. 4 that both the
negative-slope and second-quadrant resonant-mode
instabilities influence the shapes of the instability

Ž .boundaries for adjacent modes ns"1, "2 . In
Ž .particular, for mid-mode driving ns"1 , the low-x

region to the left of the light dash-dot line is accessi-
Ž .ble because the state Eq. 38 is linear; transmission

in this region will be unstable if trt is within ther

heavy solid boundaries.
For injection of atoms prepared by a pr2 pulse,

Ž .the state Eq. 14 , with upper sign, is shown in Fig.
5; the curve does not start at the origin because the
atoms enter the resonator in a superposition state.
The corresponding instability boundaries are plotted
in Fig. 6, and show several new features. For exam-
ple, the J fingers reach from the first negative-slope1
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Ž . Ž .Fig. 5. Output field x versus input field y for injection of
superposition-state atoms prepared by a p r2 pulse; Cs5.

Žregion into the second. In the resonant cavity ns
."2, dashed line , for trt f1, this would maker

most of the intermediate positive-slope branch unsta-
ble, if it weren’t already unstable due to J for ns02
Ž .light vertical dash-dot line . In fact, because of the

Ž .resonant-mode instability condition given in Eq. 46 ,

Fig. 6. Instability boundaries for Cs5 and p r2 preparation, as
in Fig. 5. Light lines correspond to ns0; solid lines for J ,1

denoting regions of negative slope in Fig. 5, and dash-dot lines for
J , where y-4C. Heavy solid and dashed lines indicate ns"12

and "2, respectively, where the fingers coming up from the x
axis are J -type unstable regions, and the other curves enclose1

J -type unstable regions.2

Ž . Ž .Fig. 7. Output field x versus input field y for injection of
superposition-state atoms prepared by a 3p r2 pulse; Cs5.

the entire transmission curve of Fig. 5 is unstable for
y-4C. We believe this to be the first time that such
an instability has been predicted. Related to this, for

Ž .the non-resonant cavity ns"1, dashed lines , in
contrast to the cases of atoms injected in the ground
or excited state, the extent of the J region for small2

Fig. 8. Instability boundaries for Cs5 and 3p r2 preparation, as
in Fig. 7. Light solid lines correspond to ns0 and denote regions
of negative slope in Fig. 7. Heavy solid and dashed lines indicate
ns"1 and "2, respectively, where the fingers coming up from
the x axis are J -type unstable regions, and the closed curves are1

J -type unstable regions.2
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trt makes the output unstable at all values ofr

intracavity field within a range that encompasses all
regions of negative slope in the resonant state equa-
tion as well as the regions between them, covering
the entire y-4C region as trt goes to zero.r

The results of Figs. 5 and 6 are qualitatively
different from the behavior observed in any other
case, as Figs. 7 and 8 show for injection of 3pr2-

Ž .pulse prepared atoms. Fig. 7 is a plot of Eq. 14 ,
using the lower sign. Unlike the pr2 case of Fig. 6,
Fig. 8 shows no J -type instability region for ns02

because y is always greater than y4C; thus there is
no continuous instability region for other modes.
Some J regions of instability here do, however,2

extend beyond the negative-slope parts of Fig. 7, as
seen before in Figs. 2 and 4.

In Figs. 9 and 10, the case of pr2-pulse prepara-
tion is shown for an atomic beam with three times
the density so that Cs15. Here, there are many
more regions of negative slope — not only multiple
regions of bistability are evident in Fig. 9, but also
one region of tristability, around ys16. The insta-
bility boundaries are likewise more complex, but
again show the global J -type instability for the2

resonant mode and the corresponding global instabil-
ity for the mid-mode-driven cavity for small trt .r

Note that the J fingers from the lowest-x region1

extend over many hysteresis loops of the resonant
state equation, and that the ends of the fingers from

Ž . Ž .Fig. 9. Output field x versus input field y for injection of
superposition-state atoms prepared by a p r2 pulse; Cs15.

Fig. 10. Instability boundaries for Cs15 and p r2 preparation, as
in Fig. 9. Light lines correspond to ns0; solid lines for J ,1

denoting regions of negative slope in Fig. 9, and dash-dot lines for
J , where y-4C. Heavy solid and dashed lines indicate ns"12

and "2, respectively, where the fingers coming up from the x
axis are J -type unstable regions, and the other curves enclose1

J -type unstable regions, except those just above xs10, where2

the ends of the second fingers have pinched off.

the next lower region have pinched off and appear as
closed curves. For increasing C, the instability
boundaries continue to increase in complexity.

6. Conclusions

We have extended the stability analysis of the
w xtransit-multistable ring cavity 1,2 , sometimes called

w xthe mesomaser 3–6 , to consider multimode instabil-
ities. Besides considering the cases of atoms injected
in their ground or excited energy eigenstates, we also
considered injection of atoms in superposition states
produced by pr2 or 3pr2 coherent pulses. We
illustrated the close connection between single-mode
and multimode instability, and used the method of

w xCarmichael 17 to calculate the boundaries of the
Ž .unstable regions in the trt yx plane. We foundr

that, unlike the stationary-atom or single-mode me-
somaser case, instability due to the imaginary part of
the intracavity field plays a significant role in the
multimode analysis. In fact, this is especially true for
superposition-state injection, with global instability
of a large range of the state equation being achiev-
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able using pr2-pulse preparation. We believe that
this is the first observation of such an instability in
an optically bistable system using a medium of
resonant, homogeneously-broadened atoms.

A physical system in which these effects could be
Ž .observed consists of a dye-laser or diode-laser

driven ring cavity with a round-trip path of 50–100
Žcm, crossed by a fast beam of alkali atoms atoms

ionized, accelerated through 5–10 kV, and neutral-
. w xized 18 . Such a beam would be very nearly mo-

noenergetic. Alternatively, one could use a much
Ž .longer tens of meters far-infrared or microwave

cavity and a velocity-selected beam of Rydberg
atoms. The atomic beam density required is that to
reach Cs5; for trt s0.1, an acceptably smallsp

w xvalue 1 , this means the same density as required to
achieve C s200, which is not difficult in a goodst

cavity. The cavity length must be such that the
round-trip time is of the same order as the atomic
transit time. The fast-atomic-beam system is espe-
cially attractive in that it allows for control of the
transit time as well as the injected atomic state.

One complication present in most physical sys-
tems is that the resonator mode would have a Gauss-
ian profile. This is no problem if the atomic beam
has a height small compared to the transverse dimen-
sion of the Gaussian profile, so that all atoms can
pass through the peak and experience the same effec-
tive pulse. If this is not possible, and the height of
the atomic beam is much larger than the Gaussian
mode waist, the multistable regions would only be

w xreduced in size, not eliminated 1 . However, the
effect of the Gaussian mode on the instabilities is
still an interesting question open for further investi-
gation. It is known that the multimode instability
disappears in a homogenously-broadened resonant

w xsystem in a Gaussian mode 14 , but the evolution of
the atomic state in transit suggests that our system
might not be similarly restricted. Further investiga-
tion is warranted, also, into the dynamics of the
transmission of the transit-multistable ring cavity,
especially with superposition-state injection. Even

more richness in the nonlinear dynamics might be
expected here than was observed in the case of

w xexcited-state injection 6 .
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