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Light can couple between two orthogonally polarized
whispering-gallery modes of a microresonator; the effect
is easily observable when those modes are frequency degen-
erate, and can result in coupled-mode induced transparency
(CMIT). Experimental observations of CMIT show that
the cross-polarization coupling (CPC) strength is typically
10−8–10−7 per round trip. It is shown in this Letter that
polarization rotation resulting from optical spin–orbit
interaction through the experimentally realistic asym-
metry of a microresonator about its equator can produce
CPC with strengths in the same range as observed in
experiments. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004163

Two families of orthogonally polarized whispering-gallery
modes (WGMs) exist within a dielectric microresonator. These
are the transverse electric (TE) and transverse magnetic (TM)
modes, which are, ideally, independent of each other. However,
it is possible for light to couple between TE and TMmodes in a
non-ideal resonator. This cross-polarization coupling (CPC)
produces observable effects if the two modes are frequency de-
generate (co-resonant). We have found that if linearly polarized
light is incident on the resonator and the throughput is polari-
zation analyzed, WGMs of the incident polarization will appear
as dips in the throughput power, and those of the orthogonal
polarization will appear as peaks because of excitation by CPC.
Observation of the throughput without polarization analysis
can result in misinterpretation of the dip depth when CPC
occurs. The observation [1–3] of coupled-mode induced trans-
parency or attenuation (CMIT, CMIA) or Autler–Townes
splitting (ATS) confirms that CPC is an intracavity process.
Similar effects of polarization conversion can be observed with-
out intracavity coupling [4–8], but effects such as CMIT re-
quire it, and we will use the term CPC to imply intracavity
coupling. We emphasize that this is distinct from the polariza-
tion cross coupling of Nasir, et al. [8], which requires no CPC,

just a misalignment of the input/detection polarization basis
from the WGM basis.

Extensive experimental investigation has led us to the con-
clusion that polarization rotation is responsible for CPC. In this
Letter, it is shown theoretically that polarization rotation in a
slightly asymmetric microresonator leads to CPC with a
strength that agrees with experimental CMIT/ATS results
[2,3,9,10]. This effect is one manifestation of spin–orbit inter-
action of the light in a WGM.

Polarization rotation of guided waves due to asymmetries
such as tilted sidewalls has long been known and studied
[11–13]. It has been observed not only in waveguides but also
in resonators [14–17]. Previous work has shown that such
asymmetry-based polarization rotation is a result of optical
spin–orbit interaction, or a Berry phase effect [18–20]. In these
studies and the current work, these are geometrical effects; sim-
ilar rotation of polarization can also be observed in structures
made of birefringent material [21,22].

Here, we show that slight axial asymmetry of a WGM
microresonator about its equator leads to CPC through polari-
zation rotation in total internal reflection [23,24]. The inter-
action of spin and extrinsic orbital angular momentum [25] of
light in a WGM results in a reflection phase shift that is differ-
ent for the two circular polarizations, producing polarization
rotation and thus CPC. The WGM is treated in the eikonal
approximation [26,27], making one total reflection per wave-
length propagation distance, and the mode asymmetry
produces a slight polarization rotation with each reflection.
Coupled-mode theory is then used to take into account the
phase mismatch between the two orthogonally polarized WGMs
and their spatial overlap. This is done for several representative
pairs of orthogonally polarized co-resonant WGMs to get a
quantitative estimate of the range of CPC strengths (probability
of polarization change per round trip) that compares well with
experimental observation [2,3,9,10].

Light in a WGM circulates in the equatorial plane of the
microresonator, confined by total internal reflection. Because
the dimensions of the resonator are orders of magnitude larger
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than the wavelength of the light, a quasi-classical method, based
on the eikonal approximation, gives a very good approximation
to the exact WGM eigenfrequencies of the resonator [26,27].
Using this method, a mode is seen as being composed of rays
that make m reflections per round trip, with the distance
between reflections being one wavelength λ.

The orbital angular momentum of the WGM light circulat-
ing along the equator is in the z direction, along the resonator
axis. After one reflection, the incident TE (s-polarized) field will
produce a change in the TM (p-polarized) component, or vice
versa, according to

dETM � t 0s ETE or dETE � −t 0pETM, (1)

where [23,24]

t 0s,p �
2πhβzi
mβTE,TM

: (2)

Here, βTE,TM is the propagation constant of the light in the
incident WGM; for polarization rotation to occur, clearly its
average axial component hβzi must be nonzero, thus requiring
asymmetry of the WGM about the equatorial plane. The ro-
tation probability amplitude (per reflection) t 0s is proportional
to the cotangent of the angle of incidence (π∕m) and will be
many orders of magnitude smaller than unity, so higher-order
corrections from [23], including a complex term with phase
equal to the very small s-p reflection phase difference, have been
neglected.

In order to make a quantitative estimate of the CPC
strength, the microresonator and its WGMs need to be speci-
fied. We have used microspheres and hollow bottle resonators
(HBRs) [28–31] for studying CMIT [2,3,9,10]. Because of its
various advantages such as usage for internal sensing and ease of
strain tuning, the HBR is more convenient and will be consid-
ered here. A typical HBR is shown in Fig. 1.

The bulge in Fig. 1 is somewhat exaggerated; the HBRs that
are typically used are made from capillaries of radius 160 μm,
with a maximum bulge radius of a � 175 μm, and a wall
thickness assumed to be 10 μm for purposes of mode calcula-
tions. AWGM in the HBR is characterized by three indices: m,
as noted above, is the number of wavelengths in the equatorial
circumference; p is the radial order, the number of radial inten-
sity lobes; and q is the axial order, the number of nodes in the
axial field profile. Because of the gentle axial curvature of the

bulge, the wave equation approximately separates in cylindrical
coordinates, and the amplitude of a WGM is given by

Empq�r,φ, z� � ETE,TMRmp�r�Zmq�z� exp�imφ�: (3)

In Eq. (3), the radial function takes on different Bessel function
forms in the three regions. Let b � 165 μm be the inner radius
of the HBR and we have Rmp�r� proportional to Jm�n1β0r� for
r < b, to Jm�n2β0r� � cmpY m�n2β0r� for b < r < a, and to

H �1�
m �n3β0r� for a < r. Here, β0 is the vacuum propagation

constant, and n1, n2, and n3 are the refractive indices in the
three regions—interior, within the silica wall, and exterior, re-
spectively. Given β0 (within a narrow range), multiple solutions
will exist for various combinations of m and p, having p radial
lobes of intensity and mixing parameters cmp. Let ρ�z� be the
outer radius of the resonator at axial position z, where z � 0 at
the equator and ρ�0� � a. The shape of the bulge near the
equator can be approximated as

ρ�z� � ρ�0��1� �Δkz�2�−1∕2, (4)

where Δk is an inverse length characterizing the change in ra-
dius with z. The profile of Eq. (4) means that the axial function
Zmq�z∕σz� has the approximate form of a Gaussian multiplied
by a Hermite polynomial of order q, with σz � �a∕mΔk�1∕2.

If the internal evanescent fraction is very small, the WGM is
nearly the same as that of a solid bottle resonator; its frequency
is given approximately by an expression [26,28,29,32] that al-
lows the WGM’s effective index of refraction to be found from

n2
neff

≅ 1� αp
�2m2�1∕3 −

Ns
m�N 2 − 1�1∕2 �

3α2p
10�2m2�2∕3

�
N 3s

�
2
3 s

2 − 1
�
αp

�2m5�1∕3�N 2 − 1�3∕2 �

�
q � 1

2

�
Δka

m
: (5)

In Eq. (5), αp is the negative of the pth zero of the Airy func-
tion, N � n2∕n3, s � 1 for TE modes and s � 1∕N 2 for TM
modes, and neff is the effective index of the WGM, so that its
propagation constant is β � neffβ0.

The Fourier transform of the axial function is Zmq�βz∕σβ�,
where σβ � �mΔk∕a�1∕2; this will result in a zero hβzi if the
WGM is symmetric about the equator. However, if the bulge is
asymmetric, with slightly different curvature above and below
the equator, the axial function can be approximated using Δk�,
σz�, and σβ� above the equator (z > 0) and Δk−, σz−, and σβ−
below the equator (z < 0). Then

hβzi �
Z

∞

0

βzZ 2
mq

�
βz
σβ�

�
dβz −

Z
∞

0

βzZ 2
mq

�
βz
σβ−

�
dβz (6)

will be nonzero.
The effect of spatial overlap and phase mismatch can be ac-

counted for by using the methods of coupled-mode theory [33]
to write, for the amplitude coupled into the TM mode in one
reflection,

ΔETM � t 0s ETEiCTETM

Z
2π∕m

0

exp�iΔβaφ�dφ, (7)

where we have used mφ � βaφ from Eq. (3), Δβ �
βTE − βTM � �neff TE − neff TM�β0, and

Fig. 1. Hollow bottle resonator (HBR). A fused-silica capillary is
etched with HF solution to thin its walls, then heated and pressurized
to create the bottle-shaped bulge. The z direction is along the capillary
axis, and the equatorial plane is where the diameter is maximum. Note
the slight asymmetry about the equatorial plane, resulting from
unavoidable non-uniformity in heating while pressurizing.
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CTETM � β2TE − β
2
TM

2βTM

Z
∞

0
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Z

∞
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Zmq

�
z
σz

�
Zm 0q 0
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z
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�
dz (8)

in which the primed indices are for TE and the unprimed are
for TM. Then the CPC strength resulting from the m 0 reflec-
tions in one round trip is denoted by

Ts � �m 0t 0sCTETM�2
sin2

�
Δβ
2

2πa
m 0

�
�
Δβa
2

�
2

: (9)

In order to compare results of the analysis described above to
experimentally determined values of CPC strength, we need to
assume specific parameters of the HBR and of the two coupled
WGMs to be used in the calculation. The input light of
TE polarization is taken to have a vacuum wavelength of
1550 nm, where the refractive index of fused silica is n2 �
1.444 (it is assumed that n1 � n3 � 1). At the equator, the
outer radius of the HBR is a � 175 μm and the inner radius
is b � 165 μm. EachWGM is characterized by the set (m, p, q,
neff ), and we take for TE the set (981, 3, 3, 1.3845) and for TM
the set (959, 5, 5, 1.3578). Their radial intensity profiles are
shown in Fig. 2.

The asymmetry assumed here is characterized by specifying
the outer radius of the HBR at z positions 0.5 mm above
and below the equator: ρ��0.5 mm� � 171.8 μm, and
ρ�−0.5 mm� � 172.4 μm. These typical values are estimated
from measurements made on photographs such as Fig. 1. This
results in slightly asymmetric axial intensity profiles, as shown
in Fig. 3.

For these two modes, Eq. (9) gives a predicted strength
for the CPC from this TE mode to this TM mode of
Ts � 2.82 × 10−7. This value is near the upper limit of exper-
imentally determined CPC strengths [2,3,9,10]; observed
values range from about that upper limit to three orders of
magnitude smaller, with typical values in the 10−8 range, such
as the case shown in Fig. 4.

Since the size of the HBR is much larger than a wavelength
(m ≫ 1), it is not possible to precisely identify the mode num-
bers (m, p, q) of the WGMs that are coupled in an experiment

such as that in Fig. 4, but the mode numbers are not needed for
the steady-state model. Based on the spectral density of ob-
served WGMs, we estimate that their p values range from 1
to about 10 and their q values from 0 to about 10. Given these
ranges, perhaps it is not surprising that the predicted T s is near
the upper observed limit, since the p and q values of the two
WGMs used in the calculation are not very different and the
resulting CTETM is therefore larger than one found at random
would be. The CPC strength has been calculated using the
method described above for a few other TE/TM pairs of
WGMs, and the results are shown in Table 1. The range of
values agrees with the experimentally observed range. Note that
Tp, for coupling from TM to TE is somewhat different from Ts,
owing to the different axial extent of the two modes.

We have demonstrated that polarization rotation on total
internal reflection can account for the strength of intracavity
coupling of WGMs of orthogonal polarizations. Because of
the small axial asymmetry, this is a manifestation of the optical

Fig. 2. Radial mode profiles for the two coupled WGMs excited by
input light of 1550 nm vacuum wavelength. The outer radius of the
HBR is at r � a � 175 μm; the inner radius is at r � b � 165 μm.
Dashed black curve: TE, p 0 � 3. Solid red curve: TM, p � 5.

Fig. 3. Axial mode profiles for the two coupled WGMs excited by
input light of 1550 nm vacuum wavelength. The point of maximum
radius (equator) is at z � 0. Dashed black curve: TE, q 0 � 3. Solid red
curve: TM, q � 5.

Fig. 4. CMIT with 200-μm-radius HBR [10]. Experimental (gray)
and steady-state model (blue) throughput spectra. From the fit to the
steady-state model, it is found that T s � 1.99 × 10−8. A second
method, using the response to input amplitude modulation, gives
Ts � 2.29 × 10−8.
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spin–orbit interaction. The predicted range of CPC strengths
agrees with that found by two experimental methods using
CMIT: steady-state model fit [2,3,9,10], as in Fig. 4, and input
amplitude modulation response [9,10].

The calculated CPC strengths depend most strongly
(variation by orders of magnitude) on the values of the mode
overlap integrals such as CTETM. These are not zero because the
modes have different values of m. The dependences of the CPC
strength on phase mismatch (Δβ) and on the assumed asym-
metry are much weaker (factors of less than 10). Questions that
remain open concern the details of the effect of the mode num-
bers of the two WGMs and of the HBR wall thickness. If the
wall is thinner, higher-order radial modes will have a significant
internal evanescent component, affecting their effective refrac-
tive indices. Work is underway to derive an expression similar
to Eq. (5) that accounts for the inner boundary as well as
the outer.
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