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Fast-light enhancement of an optical cavity by polarization mode coupling
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We present an entirely linear all-optical method of cavity scale factor enhancement that relies on mode
coupling between the orthogonal polarization modes of a single optical cavity, eliminating the necessity of using
an atomic medium to produce the required anomalous dispersion, which decreases the dependence of the scale
factor on temperature and increases signal-to-noise ratio by reducing absorption and nonlinear effects. The use
of a single cavity results in common mode rejection of the noise and drift that would be present in a system
of two coupled cavities. We show that the scale-factor-to-mode-width ratio is increased above unity for this
system, and demonstrate tuning of the scale factor by (i) directly varying the polarization mode coupling via
rotation of an intracavity half-wave plate, and (ii) coherent control of the cavity reflectance which is achieved
simply by varying the incident polarization superposition. These tuning methods allow us to closely approach
the critical anomalous dispersion condition and achieve unprecedented enhancements in scale factor and in the
scale-factor-to-mode-width ratio. Based on these findings, we propose an adaptation of the traditional optical
cavity gyroscope that takes advantage of polarization mode coupling to enhance the gyro scale factor, and
demonstrate how the bandwidth of the scale factor enhancement for this gyroscope can be effectively broadened
in comparison with fast-light gyroscopes based on atomic media.
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I. INTRODUCTION

Recent experiments using atomic Rb vapor as an intracavity
anomalous dispersion, or fast-light, medium have demon-
strated that the scale factor of an optical cavity can be strongly
enhanced as a result of mode pushing which provides a positive
feedback to the cavity response [1–4]. The cavity becomes
hypersensitive to variations in length at a critical value of the
anomalous dispersion where a pole occurs in the cavity scale
factor. The mode width does not increase to the same degree
because of mode reshaping by group velocity dispersion,
resulting in an overall increase in the scale-factor-to-mode-
width ratio. These revelations have led to efforts to further
develop these dispersion-enhanced cavities for applications
such as increasing the precision of optical gyroscopes for
inertial navigation [1–7], increasing the sensitivity-bandwidth
product for interferometric gravity wave detectors [8–10],
precision measurements of the Lense-Thirring frame-dragging
effect [6], increasing the delay-bandwidth product of data
buffers without distortion [11], the autostabilization of op-
tical cavities [12,13], and enhanced strain and displacement
sensing [14].

One drawback that has been pointed out for these atom-
cavity systems, however, is that the increase in the scale-
factor-to-mode-width ratio is accompanied by a substantial
decrease in the output intensity as a result of the absorption
of the atomic medium, thereby limiting the increase in the
signal-to-noise ratio [15]. Additional concerns are spatial and
temporal variations in scale factor as a result of the temperature
dependence of the atomic absorption, as well as the presence
of intensity-dependent nonlinearities which complicate the
calculation of the response, tend to reduce the scale factor,
and limit the signal-to-noise ratio by limiting the intensity of
the input beam that can be applied.

Fortunately, the dispersion enhancement does not only
occur for the case of an intracavity medium. An alternative
and more fundamental way of looking at the “dispersion”
enhancement is that it results from the coupling of resonant
modes. In this view, the scale factor pole is simply an
example of an exceptional point, commonly found in coupled
systems described by non-Hermitian Hamiltonians, such as
coupled oscillators having different loss rates. The dispersion
enhancement can therefore be found in any physical system
involving coupled oscillators near such an exceptional point
[16]. Therefore, an attractive approach would be to eliminate
the intracavity atomic medium entirely and instead use the
resonances of a second cavity of fixed length as the intracavity
dispersive element. As discussed in a previous work, to
achieve the required anomalous dispersion and enhance the
scale-factor-to-mode-width ratio it is necessary to undercouple
the individual cavities to each other and undercouple the entire
system to the incident light, respectively [17]. In practice this
is easy to achieve and results in a higher signal-to-noise
ratio because light that would have been absorbed and
reradiated incoherently in all directions by the intracavity
absorber is now coherently recycled by the additional cavity.
Moreover this all-optical approach is entirely linear, does
not suffer from the temperature dependency of the atomic
absorption, and is not limited to operation at atomic resonance
frequencies.

Producing a coupled-cavity system with a stable relative
detuning between the modes of two different cavities is not a
simple proposition, however, because each cavity suffers from
independent amounts of noise and drift. Implementation of
such a scheme therefore requires the stabilization of one cavity
to the other at some controllable offset. A chief advantage of
the atom-cavity systems, therefore, is the inherently stable
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resonant frequencies offered by atomic systems for creating
the dispersion enhancement. An additional complication is
that there is no simple way to control the degree of coupling
between the two cavities in order to tune the scale factor.
In the case of an atom-cavity system the scale factor can
be controlled by modifying the atomic absorption using
temperature, magnetic field, or a second optical pumping
beam applied transverse to the cavity [3]. Unfortunately,
these methods cannot be used in the coupled-cavity approach
because they all rely on the presence of an atomic vapor.
While it is possible to use coupled fiber optic resonators
with tunable couplers, these systems typically suffer from
even greater noise and drift than do free space cavities [18].
In this paper, we present an alternative “coupled-cavity”
approach which relies on mode coupling between orthogonally
polarized modes in a single cavity. The noise and drift are
common mode rejected, because both polarization modes,
i.e., “cavities,” share the same optical path, resulting in
a stable relative mode detuning which can be controlled
by an intracavity variable retarder aligned with one of the
polarization modes. Mode coupling is controlled by the simple
rotation of an intracavity half-wave retarder. In this manner,
the enhancement in cavity scale factor is reproducible and
stable.

An additional benefit of using polarization mode coupling is
that it allows investigation of an alternative method for tuning
the scale factor, via coherent control of the cavity reflectance.
In this case a second input beam is directed into the cavity
such that it coherently interferes with the first input beam
[4,19]. The tunability of the scale factor then arises from the
interference between the transmission of the first input and
the reflection of the second from the cavity. This approach
is closely related to the recently demonstrated phenomenon
of coherent perfect absorption [20,21], but differs in that it
does not require increasing the cavity absorptance to unity.
Instead only a slight modification of the cavity absorptance is
required, which can be accomplished simply by varying the
relative intensity of the second beam while keeping its relative
phase constant. This method has the advantage over other scale
factor tuning methods in that it is completely linear, occurs
irrespective of the choice of intracavity medium, and occurs
on the fast time scale of the cavity buildup time. Moreover,
the scale factor can be tuned without needing to disturb or
modify anything inside the cavity, which could diminish the
cavity performance. This scheme is difficult to implement,
however, using two different cavities because the introduction
of a second coherent input beam effectively means employing
an interferometer. The resulting phase fluctuations in the
interferometer, along with the required active stabilization
of the coupled cavities, makes the use of two different
cavities impractical for demonstrating this method of tuning
the scale factor. The arrangement presented herein solves these
problems. The two coupled cavities are replaced by a single
cavity whose polarization modes couple, enabling interference
to occur between the two orthogonally polarized inputs. Hence,
this arrangement allows two “inputs” into the cavity whose
phase difference is stable, being determined solely by the input
polarization, without having to actually inject a second coher-
ent beam, and it results in common mode rejection of cavity
noise.
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FIG. 1. (a) A tunable diode laser is scanned over the modes of
a passive ring cavity to obtain s- and p-polarized reflection and
transmission spectra (PBS: polarizing beam splitter). The cavity
polarization modes are detuned by a variable retarder (VR) and
coupled by a half-wave plate (HWP). The linear input polarization
is controlled by a half-wave plate external to the cavity. (b)
Equivalent coupled-cavity system, where Ẽin

1 and Ẽin
2 represent the

two orthogonally polarized inputs.

II. EXPERIMENTAL SETUP AND MEASUREMENT
OF CAVITY SCALE FACTOR

An external-cavity diode laser having a linewidth of
<1 MHz at 780 nm was used to scan over the modes of an L =
30 cm, 1 GHz free spectral range (FSR) optical ring cavity to
obtain polarized reflection and transmission spectra as shown
in Fig. 1(a). An intracavity liquid crystal (LC) variable retarder
whose slow (tuning) axis was aligned horizontally with the
p-polarization mode was used to introduce a controllable
detuning between the two orthogonal polarization modes of
the cavity. An intracavity half-wave plate (HWP) whose fast
axis was aligned close to the vertical direction was used to
couple the polarization modes. The coupling can be turned off
by positioning the wave plate in the vertical (or horizontal)
direction and is maximized at 45° at which point the cavity
FSR is essentially halved. An alternative method for varying
the coupling would be to use a second variable retarder whose
slow axis is fixed at 45°, and vary its retardance [22]. In practice
we found this to be difficult because of the temperature depen-
dence of the retardance. At this large rotation angle, the re-
tardance difference between the coupled and uncoupled states
was negligible compared with retardance changes induced by
noise or temperature variations during the measurement.

III. THEORETICAL MODEL

For the purposes of modeling, the two coupled polarization
modes can be treated as if they were the modes of two (stable)
coupled cavities with two inputs, as shown in Fig. 1(b). This
coupled-cavity model is formally identical to a Jones matrix
treatment (see Appendix) where every element is represented
by a diagonal Jones matrix except the half-wave plate that
couples the two polarization modes. Hence, the accuracy of
this model relies on the assumption that the other cavity
elements do not produce any additional polarization coupling.
The simple coupled-cavity model, however, is more intuitive
than the Jones matrix treatment, and provides closed-form
analytic expressions which enable rapid computation of the
cavity response.
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Much of the theory that follows was presented previously
for a single input [17], but here we generalize our previous
treatment to two input beams. The total single-beam complex
reflection and transmission coefficients for a coupled-cavity
system can be written in terms of the detuning �L = ωL − ωq

of the laser frequency ωL from the qth resonance frequency of
the fixed cavity ωq by the nested relations

ρ̃13(�L,δm,q) = Ẽr
1

Ẽin
1

= r1 − c1a1ρ̃23(�L) exp[iφ1(�L,δm,q)]

1 − r1a1ρ̃23(�L) exp[iφ1(�L,δm,q)]

(1)

and

τ̃13(�L,δm,q) = Ẽt
1

Ẽin
1

= t̃1τ̃23(�L)a1/2
1 exp[iφ1(�L,δm,q)/2]

1 − r1a1ρ̃23(�L) exp[iφ1(�L,δm,q)]
,

(2)

respectively, where Ẽin
1 , Ẽr

1, and Ẽt
1 are the complex electric

field amplitudes for the input, reflected, and transmitted
beams for the first input; φ1(�L,δm,q ) = (�L − δm,q)τ1 =
(ωL − ωm)τ1 is the round-trip phase shift accumulated in
the first cavity; δm,q = ωm − ωq is the detuning of the mth
mode of the first (tunable) cavity from the qth mode of the
second (fixed) cavity when they are uncoupled from one
another; τ1,2 are the round-trip times in the first and second
cavities; and a1,2 accounts for other frequency-independent
round-trip losses in the first and second cavities, respectively.
The reflection coefficients of the mirrors rj are assumed to
be real valued where j = 1,2,3. The mirror transmission
coefficients are t̃j = (1 − r2

j − b2
j )1/2eiϑj = tj e

iϑj , where bj

accounts for mirror absorption, and ϑj is the mirror transmitted
phase shift. The quantity cj ≡ r2

j + t2
j = 1 − b2

j represents the
sum of the reflection and transmission for each component. We
will assume that the coupling is conservative such that b2 = 0.
The transmitted phase at the two input mirrors is simply
ϑ1,3 = π/2, whereas the transmitted phase of the coupling
element (HWP) is ϑ2 = π . Because of cavity misalignment,
however, the latter can effectively depend on the rotation angle
of the wave plate, i.e., ϑ2(θc). The coefficients of the second
fixed cavity are given by similar (but not nested) relations:

ρ̃23(�L) = r2 − c2r3a2 exp[iφ2(�L)]

1 − r2r3a2 exp[iφ2(�L)]
(3)

and

τ̃23(�L) = t̃2 t̃3a
1/2
2 exp[iφ2(�L)/2]

1 − r2r3a2 exp[iφ2(�L)]
. (4)

Note that the round-trip phase shift in the second cavity
φ2(�L) = τ2�L does not depend on the detuning δm,q , because
its length does not change. And because the two cavities have
the same length we can assume τ2 = τ1.

Now the total reflected field from the first (second) cavity
is a coherent combination of the reflection of the first (second)
input with the transmission of the second (first) input, i.e.,

ρ̃1(β,ϕ) = Ẽout
1

/
Ẽin

1 = ρ̃13 + τ̃31β exp(iϕ),
(5)

ρ̃2(β,ϕ) = Ẽout
2

/
Ẽin

2 = ρ̃31 + τ̃13 exp(−iϕ)/β,

where Ẽin
2 is the electric field amplitude of the second

input, and Ẽout
1 = Ẽr

1 + Ẽt
2 and Ẽout

2 = Ẽt
1 + Ẽr

2 are the field

amplitudes at the outputs. The additional factor β exp(iϕ)
represents the relative amplitude and phase of the second input
with respect to the first, at the cavity input mirrors, i.e.,

Ẽin
2

/
Ẽin

1 = β exp(iϕ). (6)

Note that to obtain the backward-going coefficients ρ̃31 =
Ẽr

2/Ẽ
in
2 and τ̃31 = Ẽt

2/Ẽ
in
2 we simply reverse the roles of r1

and r3, t̃1 and t̃3, a1 and a2, φ1(�L,δm,q), and φ2(�L), and
replace t̃2 with its complex conjugate wherever it appears in
Eqs. (1)–(4).

Now, assume the first (second) cavity represents the p-
polarized (s-polarized) mode, such that ρ̃p (β,ϕ) = ρ̃1 (β,ϕ)
and ρ̃s (β,ϕ) = ρ̃2 (β,ϕ + π ). When the two input directions
model orthogonal polarizations, a factor of π must be added
to ϕ for one of the polarizations because the input angle is
effectively reversed with respect to the cavity upon a change
in the input direction, i.e., there is a mirror image change in
the reference frame. The total reflectance of the two (s- and
p-polarized) inputs is then given by Rs,p = |ρ̃s,p|2, i.e.,

Rs = |ρ̃13|2 + β2|τ̃31|2 + 2β Re{ρ̃∗
13τ̃31 exp(iϕ)},

Rp = |ρ̃31|2 + |τ̃13|2/β2 − 2 Re{ρ̃∗
31τ̃13 exp(−iϕ)}/β. (7)

The unlabeled mirrors in Fig. 1(b) are considered to have
unity reflectance. When cavity transmission is considered, a
slight modification of the above equations must be made to
include the reflection coefficients r4 and r5 at the cavity output
mirror. Calculation of the total cavity transmission through this
mirror for the two polarizations is then similar to the analytical
treatment given above for the cavity reflection.

Typically, the specific frequencies of the coupled polariza-
tion modes in reflection are obtained analytically by setting
the derivative of Eq. (7) with respect to �L equal to zero.
For a single input (β = 0) these solutions are readily found,
but for two inputs the interference term complicates the
calculation and numerical peak finding methods are required.
The detuning between the mth mode of the first cavity from the
qth mode of the second cavity when the cavities (orthogonal
polarizations) are coupled to one another can be defined
as �m,q = m − q . We will only consider the interaction
between two nearby modes, so we can drop mode numbers
for simplicity, and from here on will refer to the coupled and
uncoupled mode detunings as simply � and δ, respectively.
The enhancement in the cavity scale factor can then be defined
as S = d�/dδ. As discussed previously, a pole occurs in the
scale factor at a critical anomalous dispersion (CAD) where
the cavity becomes hypersensitive to length changes.

For a single-beam incident on a coupled cavity at least
one of the individual cavities must be undercoupled to the
other to achieve the required intracavity anomalous dispersion,
i.e., (r1 < r2/a1) ∨ (r3 < r2/a2). Furthermore, enhancement
of the scale-factor-to-mode-width ratio S/W requires that the
entire coupled-cavity system be undercoupled to the incident
light, i.e., r1 > a1ρ23 [17]. When a second beam is incident
on the system these specific conditions are modified by the
interference with the second beam, but the general condition
still holds that the spectra of the individual cavities and that
of the entire system (as perturbed by the second beam) should
impart a phase shift that decreases with frequency, i.e., be
anomalously dispersive.
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(a) (b)

FIG. 2. (Color online) s-polarized (solid curve) and p-polarized (dashed curve) reflection spectra produced by the coupled-cavity model
at (a) δ = 0 and (b) δ = 0.02 for coupled (bottom) and uncoupled (top) polarization modes. In this and subsequent figures, all frequencies are
in units of the free spectral range. The phase shift of the coupling mirror is set to ϑ2 = π , which produces symmetric results about �L = 0
when δ is reversed in sign. The reflection coefficient of the coupling mirror is r2 = 0.9989 as in Fig. 5. All other parameters are the same as
described below in Sec. IV, i.e., a1 = 0.825, r1 = 0.897, a2 = 0.813, r3 = 0.888, r4 = 0.932, r5 = 0.995, b1 = 0.255, b3 = 0.260, b4 = 0.120,
β = 1.376, and ϕ = 0. In (a) mode broadening of the p-polarized mode occurs, while in (b) the scale factor is enhanced as a result of mode
pushing of the p-polarized mode, i.e., � > δ. For the dotted curve the relative amplitude of the second input is increased to β = 3.0, which
causes the p-polarized mode to split in (a) and to be pushed to a greater extent in (b). The s-polarized mode is not significantly changed and so
is not shown for this case. A pole in the scale factor occurs at the CAD condition when the spectrum just splits at δ = 0.

In Fig. 2 polarized reflection spectra generated by Eq. (7) are
shown for coupled and uncoupled polarization modes at two
different values of δ. These spectra demonstrate how the scale
factor can be enhanced by mode pushing and how this pole
can be approached or exceeded by variation of the coupling
parameter r2 or the relative input amplitude β. It is apparent
by inspection of Eq. (7) that three terms contribute to the scale
factor. The first two terms have been discussed previously
[17]. The third term is the only contribution that contains the
relative phase ϕ, and arises due to the interference between
the transmission of one input beam and the reflection of the
other input beam. This modification of the cavity reflection
spectrum by a second input beam that is coherent with the
first, is the same physical mechanism behind the recently
discussed phenomenon of coherent perfect absorption [21,22],
differing only in the degree of output cancellation. In the case
of coherent perfect absorption, the reflection is completely
cancelled. On the other hand, only a small change in reflection
is needed to obtain a substantial modification of the cavity

scale factor, particularly near the CAD condition where a
pole in the scale factor occurs. Importantly, as β is varied,
the symmetry of the spectrum about �L = 0 is preserved
only when ϕ = 0 or π . For linearly polarized incident light,
this condition is automatically satisfied. When ϕ = 0, as β is
increased, the reflectance of the cavity at �L = 0 increases,
which in turn increases the scale factor as shown in Fig. 2.
When β is sufficiently large that the scale factor pole is
exceeded, the spectrum splits. For ϕ = π , the opposite occurs
as β is increased (not shown). In this case, the reflectance
of the cavity decreases, thereby reducing the scale factor and
moving the cavity away from the CAD condition.

IV. RESULTS AND DISCUSSION

Spectra were recorded with and without mode coupling, at
a variety of detunings as one polarization mode was tuned
across the other. A larger number of spectra were taken
near the detuning where the two polarization modes were

(a) (b)

FIG. 3. (Color online) Scale factor in (a) reflection and (b) transmission. Circles represent experimental data, while solid curves represent
the theoretical model. The coupling was a fitting parameter, which resulted in ϑ2 = 2.4 for both cases as well as r2 = 0.9985 in (a) and
r2 = 0.9974 in (b).
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coresonant by applying a nonlinear voltage step on the LC
retarder. An automated peak finding program was written to
obtain the frequencies of the mode peaks as well as their
FWHM mode widths from each of the experimental spectra
with the coupling turned on and off resulting in the scale
factor plots shown in Fig. 3. Each data point in the figure
represents a different liquid crystal voltage. The following
procedure was used to obtain a comparison of the theory
with the experimental data: First, the reflection coefficients
at the transmission port were obtained by direct measurement
to be r4 = 0.932 and r5 = 0.995. Measurements of the mirror
absorption yielded b1 = 0.255, b3 = 0.260, b4 = 0.120, and
b5 = 0.060. Next, at an arbitrary value of δ the uncoupled
reflection and transmission spectra for the p-polarized modes
were fit to the theory using a1 and r1 as fitting parameters.
Similarly, the spectra for the s-polarized modes were fit to the
theory using a2 and r3 as fitting parameters. The best-fit values
from the transmission and reflection spectra were slightly
different and therefore average values were determined. This
procedure yielded a1 = 0.825, r1 = 0.897, a2 = 0.813, and
r3 = 0.888. For comparison, direct measurements of the mirror
coefficients yielded r1 = 0.906 and r3 = 0.903. Therefore,
the two “cavities” were undercoupled to each other and the
system was undercoupled to the incident light as required
to obtain an enhancement in the scale-factor-to-mode-width
ratio. The cavity finesse was measured from the uncoupled
s-polarized reflection spectra to be F = 9. The finesse of the
uncoupled p-polarized modes was only slightly smaller. The
relative amplitude between the s- and p-polarized inputs was
found from the incident linear polarization angle θi = 36◦
(with respect to the vertical) to be β = cos θi/sin θi = 1.376
(more s than p polarization was incident on the cavity). For
incident light that is linearly polarized, the relative phase of
the inputs ϕ is either zero or π , depending on the orientation
of the input wave plate θi with respect to that of the coupling
wave plate θc. The relative phase is zero when the sines of these
angles have the same sign, and π otherwise. In our case ϕ = 0.
As noted previously, for the s-polarized (or backward-going)
input, we must add a factor of π το ϕ in the second equation
in Eqs. (5), because the orientation of the coupling wave-plate
angle is effectively reversed with respect to the second input.

Next, theoretical scale factor curves were produced using
the values determined above and were fit to the data for
both the reflection and the transmission, with the coupling
reflection coefficient r2 as a parameter as shown in Fig. 3.
This procedure yielded best-fit values of r2 = 0.9985 and
r2 = 0.9974, respectively. In the experiment, however, the
coupling wave plate was set to θc = 1◦, corresponding to
r2 = cos(2θc) = 0.9994. The fact that the best-fit values were
larger than expected was likely due to a small residual coupling
that could not be completely zeroed out even when the wave
plate was rotated to the vertical position. This observation and
the discrepancies in these values suggest that other sources of
polarization coupling that are not accounted for by the simple
coupled-cavity model exist within the cavity.

Note that near the coresonance condition, the maximum
scale factor enhancement of the reflection is Smax = 3.0,
whereas mode splitting is observed in the transmission,
because the CAD condition is different for reflection and
transmission. The p-polarized mode (the mode being tuned)

experiences the majority of the mode pushing and reshaping.
The s-polarized mode is also modified, but to a substantially
lesser degree because of the relatively large value of β and
because it is closer to critical coupling (see Fig. 2). Hence,
the overall result is that the modes are pushed away as they
approach one another, leading to an increase in S. Rotating
either the coupling wave plate or the input wave plate in the
opposite direction such that ϕ = π reverses the effect and the
scale factor decreases. The asymmetry of the mode splitting
and offset of the enhanced scale factor region from δ = 0 in
Fig. 3 is a result of a slight mode asymmetry that occurs as
a result of cavity misalignment, which effectively causes the
detuning between the modes to change as the coupling is varied
by rotation of the wave plate. This effect can be taken into
account in the theoretical model via the coupler transmitted
phase ϑ2. The value of ϑ2 was adjusted until the offset due to
the asymmetry matched that of the data, which occurred at a
value of ϑ2 = 2.4. Reversing the sign of ϑ2 also reverses the
offset about δ = 0.

The FWHM mode widths of the s- and p-polarized modes
as the detuning between them is varied are shown in Fig. 4.
Mode broadening is observed for the p-polarized mode,
whereas a slight mode narrowing occurs for the s-polarized
mode. The s-polarized mode experiences the opposite effect
from that of the p-polarized mode because of the factor of
π that must be added to ϕ in the second equation in Eq. (5)
from the change in reference frame. Note that the increase in
the mode width for the p-polarized mode as a result of the
dispersion is less than Wp = 1.5, where W is the mode width
normalized to its off-resonance value. Hence, the scale factor
is increased by a factor that is larger than the mode width,
resulting in an overall increase of at least S/W = 2.

To demonstrate coherent control of the scale factor, the
incident linear polarization angle θi was varied while keeping
the angle of the coupling wave plate θc constant as shown in
Fig. 5. Three input angles were chosen: θi = 45◦, θi = 30◦, and
θi = 24◦, corresponding to β = 1.00 (equal input intensities),
β = 1.73, and β = 2.25, respectively. Note that as the value
of β increases, the scale factor for the reflected beam also

FIG. 4. (Color online) FWHM mode widths for p-polarized (top)
and s-polarized (bottom) modes in reflection. Solid curves represent
the theoretical model. Dots are experimental data. The mode width
increase (decrease) near the coresonance detuning (δ = 0) is due to
mode pushing (pulling).
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(a) (b)

FIG. 5. (Color online) Tuning by coherent control of the cavity scale factor: (a) theoretical model and (b) experimental data. The scale
factor for reflection increases as the relative amplitude of the second input beam β increases via rotation of the input polarization. The coupling
parameter was r2 = 0.9989. All other parameters are the same as described previously.

increases due to the interference with the second input beam.
The interference effectively attenuates the mode, increasing
the effect of the anomalous dispersion introduced by the
coupling to the s-polarized cavity mode (see Fig. 2). At
θi = 45◦ the scale factor is not enhanced, i.e., S = 1.0, whereas
at θi = 24◦ the enhancement was measured to be S̄ = 8.3 by
making a linear fit to only the points residing in the linear
regime close to the resonance. This procedure results in an
average (rather than maximum) scale factor in the regime close
to resonance. Hence, without modifying or disturbing any
intracavity elements the scale factor can be tuned over a large
range merely by changing the input polarization superposition.

In Fig. 6 an attempt was made to obtain the largest possible
scale factor within the experimental constraints to demonstrate
the pole in the scale factor that occurs at the CAD condition.
The cavity was realigned to minimize misalignment, the
transmission path was eliminated by replacing the output
coupler with a high reflector such that r4 = r5 = 1, and
the coarse wave-plate mounts were replaced with precision
rotation mounts to hone in on the scale factor pole. Note
that the offset of the data from δ = 0 has the opposite
sign and is now smaller than it was in Fig. 3 as a result
of the improved alignment. The new value of the finesse
measured for the uncoupled s-polarized modes was F = 10.
The input polarization was set to θi = 24◦ (β = 2.25), the

coupling wave plate was set at θc = 3◦ (corresponding to
r2 = 0.9945), and the wave plates were finely tuned over a few
arc minutes until the spectrum, observed on an oscilloscope,
came very close to splitting. Data were then recorded over
a small region around δ = 0. The resulting average scale
factor enhancement near coresonance was measured to be
S̄ = 28.3 ± 1.0. The mode width of the p-polarized modes
increased by only W̄p = 1.85 ± 0.003, whereas the mode
width of the s-polarized modes was almost unchanged at
W̄s = 0.94 ± 0.002. Hence, the scale-factor-to-mode-width
ratio was enhanced by S̄/W̄p = 15.2 ± 1.0.

V. POLARIZATION-COUPLED PASSIVE FAST-LIGHT
OPTICAL GYROSCOPE

In this section we propose a passive optical gyroscope that
takes advantage of polarization mode coupling to produce
anomalous dispersion, resulting in an enhancement of the gyro
scale factor. A general schematic of the setup is shown in Fig. 7.
In this arrangement, the cavity modes of both polarizations
split as a result of the rotation, but the electro-optic modulator
(EOM) creates an index difference between the s and p

polarizations which results in different amounts of mode
splitting for the two polarizations. The polarization mode
that splits less, enhances the splitting of the mode that splits

(a) (b)

FIG. 6. (Color online) (a) A pole in the scale factor becomes evident near the critical anomalous dispersion condition. The dotted line is
the result of a linear fit to points lying in the region of enhanced scale factor. (b) FWHM mode widths.
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FIG. 7. (Color online) A passive fast-light optical gyroscope
based on polarization mode coupling. Rotation of the gyro at
frequency  splits the cavity modes into clockwise and counter-
clockwise frequencies ωs,p

cw and ωs,p
ccw for each polarization. A laser

at frequency ωL is shifted by some offset frequency ωoff by two
AOMs, one of which is fixed in frequency (AOM1). The cavity
mode frequency at one polarization, ωs

ccw, is locked to the light
generated by AOM1 at ω1 = ωL + ωoff by the PZT, while the
light passing through AOM2 at ω2 = ωL + ωoff + δω2 is locked
to ωs

cw by adjusting VCO2. In addition, ωp
cw is locked to ωs

cw by
adjusting the EOM, whose tuning axis is horizontal. The signals
from VCO1 and VCO2 are mixed to determine the beat frequency
ωbeat. (HWP: half-wave plate; AOM: acousto-optic modulator; LIA:
lock-in amplifier; PI: proportional integral servo controller; VCO:
voltage controlled oscillator; PZT: piezoelectric transducer; EOM:
electro-optic modulator; PBS: polarization beam splitter; BS: beam
splitter; D: detector array.)

more, resulting in an increased beat frequency measurement.
The feedback system only tracks the enhanced polarization
mode (the s-polarization mode in the figure), which functions
the same as for a traditional passive gyroscope, i.e., one of the
counterpropagating cavity modes is locked via a piezoelectric
transducer (PZT) to input light that is frequency shifted by a
fixed-frequency acousto-optic modulator (AOM), while light
from the other input is locked to the opposite cavity mode by
adjusting the frequency of a second variable-frequency AOM.
In contrast with passive fast-light gyroscopes based on atomic
media, the AOM offset frequency can be set to any value
and there is no need to stabilize the input laser frequency to
the anomalous dispersion resonance. The polarization mode
that is not enhanced (the p-polarization mode in the figure)
is stabilized to the enhanced (s-polarized) mode in one of the
two counterpropagating directions (the clockwise direction in
the figure) using the EOM (whose tuning axis is along the
p-polarized direction). The p-polarized mode in the opposite
direction (counterclockwise in the figure) is not locked and
simply pushes on the counterclockwise s-polarized mode. In
contrast with the dispersion provided by atomic resonances,
in this case the dispersive feature (the p-polarized mode)
is not fixed but follows the s-polarized mode, continually
pushing on it as the rotation rate varies. Because both
polarization modes shift similarly in frequency, the bandwidth
of the scale factor enhancement is effectively broadened in

comparison with fast-light gyroscopes based on atomic media,
which utilize anomalous dispersion features that are fixed in
frequency.

VI. CONCLUSION

We have demonstrated an entirely linear all-optical method
of cavity scale factor enhancement using mode coupling
between the orthogonal polarization modes of a single optical
cavity. Eliminating the atomic medium decreases the variation
of the scale factor with temperature, reduces absorption
and scattering of radiation from the cavity, and eliminates
saturation effects, thereby increasing the signal-to-noise ratio.
The approach is not limited to operation at atomic resonance
frequencies. Moreover, the use of a single cavity results in
common mode rejection of noise and drift, enabling demon-
stration of the scale factor enhancement without the need to
mutually stabilize two cavities. By eliminating variations that
occur in the relative phase of the two cavity input beams, this
arrangement also enables demonstration of coherent control of
the cavity scale factor. The advantage of this method is that it
enables rapid tuning (fundamentally limited only by the cavity
buildup time) of the scale factor to the optimal fast-light con-
dition without having to disturb anything inside the cavity. We
have shown that the scale factor can be readily tuned either by
rotating the coupling half-wave plate, or by rotation of the input
polarization. These tuning mechanisms have allowed us to
closely approach the CAD condition, achieving a scale factor
enhancement of S̄ = 28.3 ± 1.0 and a scale-factor-to-mode-
width ratio of S̄/W̄p = 15.2. Automation of the peak finding
procedure and the use of nonlinear data steps has allowed
substantially more data to be collected in the region of scale
factor enhancement, significantly reducing the uncertainty in
comparison with our previous measurements [3].

We have proposed a polarization-coupled passive gyro-
scope design based on these effects with the potential for
scale factor enhancements over a larger bandwidth than can
be achieved in passive fast-light gyroscopes based on atomic
media, and with larger enhancements in the scale-factor-
to-mode-width ratio. For atomic passive fast-light optical
gyroscopes, when the mode width (which is broadened by
the anomalous dispersion) is much narrower than the atomic
linewidth, the dispersion is approximately linear in a region
near the dispersive resonance, and the reshaping of the mode
due to group velocity dispersion can be neglected. In this linear
dispersion regime the scale-factor-to-mode-width ratio is not
increased above unity [1,6,14]. The linear dispersion regime
only applies at small scale factor enhancements, however, for
the following reason. Consider that to be in the linear regime
the entire cavity mode, not just the peak, must be well within
the dispersive resonance width at all detunings of interest, even
at the CAD condition. But at the CAD condition, the mode
width must become infinite according to the linear analysis,
placing the mode outside the linear regime. Therefore, at
high enough scale factors, the cavity will always be outside
the linear dispersion regime, where higher order dispersion
simultaneously augments the mode pushing (by reshaping
the mode) and limits the mode broadening, resulting in an
enhancement in S/W . As an example, consider a dispersive
linewidth � = 500 MHz (roughly the Doppler broadened Rb87
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D2 linewidth) and a mode width W = 500 kHz (corresponding
to a finesse of 2000 for a 1 GHz, 30-cm-long cavity). To
be in the linear regime the cavity mode width must be
W + 2max � �/S, where max is the magnitude of the
largest rotation induced frequency shift of interest. Therefore,
the scale factor enhancement must be S � 103 to be in the
linear regime. Hence, at larger dispersive linewidths and higher
values of the cavity finesse, it becomes progressively more
difficult (one must go to higher scale factors) to enhance the
scale-factor-to-mode-width ratio of a passive cavity containing
an atomic medium, owing to the absence of higher order
dispersion. Narrower atomic resonances can of course be
used to increase the higher order dispersion. This is not a
concern at all, however, for the proposed polarization-coupled
fast-light gyro, because the two mode widths are comparable.
Under these conditions it is not possible to be in the linear
dispersion regime even at small scale factors. The similarity in
mode widths reduces the coupling required to reach the CAD
condition (only a few degrees of rotation of the intracavity
wave plate were required) and provides strong higher order
dispersion that results in an immediate enhancement in S/W .
On a final note, it may also be possible to develop an active
polarization-coupled laser gyroscope by using orthogonally
polarized subthreshold cavity modes that push on the lasing
modes.

ACKNOWLEDGMENTS

This work was sponsored by the NASA Office of Chief
Technologist Game Changing Development Program and the
U.S. Army Aviation and Missile Research Development and
Engineering Center (AMRDEC) Missile S&T Program. The
participation of ATR was sponsored by the Summer Research
and Travel Program of the Oklahoma State University College
of Arts and Sciences.

APPENDIX: JONES MATRIX TREATMENT

The coupled polarization mode cavity can be treated using
the Jones matrix formalism. Given an input Jones vector Jin,
which specifies the polarization state of the light incident on
the input mirror in Fig. 1(a), the Jones vectors for the field
in transmission and reflection, Jt and Jr , respectively, can be
calculated. We define a composite Jones matrix

M1= AqTL2AhR2
mTL1, (A1)

where TL1 and TL2 are the Jones matrices through the first
(variable) and second (HWP) retarders, respectively, Rm is
the Jones matrix for reflection from any mirror other than
those for the transmitted and reflected beams, and Ah = A1/2

RT

and Aq = A1/4
RT are diagonal Jones matrices that account

for polarization-dependent losses distributed over a half and

quarter round-trip, respectively. ART is the total round-trip
polarization-dependent loss in the cavity. We also denote the
Jones matrices in transmission at the input and output couplers
of the ring cavity to be TB1 and TB2, respectively, and the Jones
matrices in reflection at the input and output couplers to be RB1

and RB2, respectively.
For the transmission port, the effective round-trip Jones

matrix inside the ring cavity is given by

MRT1= exp(iφR)M1RB1AqRB2, (A2)

where φR is the overall round-trip phase shift through the
empty cavity. The Jones vector in transmission from the cavity
is then given by the relations

Jt = TB2

∞∑

i=1

J(i)
5 ,

J(1)
5 = exp(i3φR/4)M1TB1Jin, (A3)

J(i)
5 = MRT1J(i−1)

5 , i > 1.

Similarly, for the reflection port the effective round-trip Jones
matrix inside the ring cavity is

MRT2= exp(iφR)AqRB2M1RB1. (A4)

The Jones vector in reflection from the cavity is then given by
the relations

Jr = TB1

∞∑

i=1

J(i)
6 − RB1Jin,

J(1)
6 = exp(iφR/4)AqRB2J(1)

5 , (A5)

J(i)
6 = MRT2J(i−1)

6 , i > 1.

The advantage of the Jones matrix treatment is that it is general
enough to include polarization coupling and polarization-
dependent losses by each of the various individual elements
that constitute the cavity. The coupled-cavity model, on the
other hand, assumes that polarization coupling occurs only
at the HWP, i.e., that every matrix except TL2 is diagonal.
As a result of the commutation of diagonal matrices, the
polarization-dependent losses occurring at each element can
be distributed up to, but not across, the HWP. It is then
valid to represent the polarization-dependent losses in the two
cavity sections by the diagonal matrices Ah and Aq as shown
in the treatment above. We obtained complete agreement
between the two models under these circumstances. Finally, it
is worthwhile to note that while the series expressions for Jt

and Jr have an infinite number of terms, in practice we find that
computation of the first 40 terms is adequate for comparison
of the models at the precision of our experiments.
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