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Dynamical determination of the strength of cross-polarization coupling
in a whispering-gallery microresonator
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Cross-polarization coupling (CPC) between coresonant orthogonally polarized modes in a single whispering-
gallery microresonator can lead to induced transparency effects. Depending on the CPC strength, coupled-mode-
induced transparency (CMIT) or Autler-Townes splitting (ATS) can be observed. Determining the CPC strength
is crucial in locating the exceptional point, where CMIT evolves into ATS and an enhancement in sensitivity to
perturbations is expected. The CPC strength can be calculated theoretically based on the transverse structure of
whispering-gallery modes. Experimentally, however, CPC strength has been inferred only indirectly by fitting
the experimental throughput spectrum to a steady-state model. In this work, we propose and demonstrate a direct
determination of the CPC strength based on the response of the throughput to a sinusoidal amplitude modulation
of the input light. Our experimental results agree with numerical fitting values and are in the same range as
predicted by theoretical calculations.
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I. INTRODUCTION

Whispering-gallery mode (WGM) microresonators are
advantageous for studies and applications of induced trans-
parency effects, which can be used for signal processing
and sensing [1–3]. Early observations on coupled resonators
demonstrated induced transparency, induced attenuation, and
Autler-Townes splitting (ATS) [4–9]. More recently, coupled-
mode-induced transparency (CMIT), coupled-mode-induced
attenuation (CMIA), and ATS have been observed in sin-
gle WGM microresonators [10–20]; nearly all of these have
involved coupling of WGMs of the same polarization but
different radial orders.

Polarization effects in WGM microresonators represent a
topic of increasing interest and importance [21–30]. We have
previously studied CMIT resulting from cross-polarization
coupling (CPC), where light of one polarization circulating in
a WGM of the microresonator can be coupled into a cores-
onant WGM of the orthogonal polarization [21,22]. In our
system, this CPC is a result of weak polarization rotation
due to the optical spin-orbit interaction [21]. In this case, the
input light and detected throughput are of one polarization,
say TE (transverse electric). Because of CPC, the interaction
with a coresonant TM (transverse magnetic) WGM produces
a throughput spectrum (as the driving laser is scanned in
frequency) showing cross-polarization CMIT or CMIA, ob-
served as splitting or modification of the shape of the resonant
dip. If the coupling is strong enough, CMIT turns into ATS
at the exceptional point [31], where dispersion enhancement
and increased sensitivity to system perturbations can be found
[3,32,33]. Being able to precisely locate the exceptional point
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is crucial in enhancing slow light, fast light, and sensor appli-
cations of WGM microresonators, for example.

The value of the intermode coupling strength in CPC,
which determines the exceptional point, can be calculated the-
oretically based on the transverse mode structure of WGMs if
the mode orders are known [21]. Experimentally, however, the
CPC strength has heretofore only been inferred indirectly by
fitting the experimental throughput spectrum to a steady-state
model [22].

In this paper, we propose and demonstrate a direct deter-
mination of the CPC strength based on the response of the
throughput spectrum to a sinusoidal amplitude modulation
of the input light [34]. First, we use a ring cavity model
to analyze the dynamics of CPC and demonstrate a very
nearly proportional dependence of the CPC strength on the
square of the modulation frequency that gives the minimum
throughput modulation amplitude on resonance (for CMIT
and ATS). Then we use a hollow-bottle resonator to deter-
mine the CPC strength experimentally. This is done first by
fitting the throughput spectrum to a steady-state model as
before; then from the modulation frequency that gives the
minimum throughput modulation amplitude, we find another
estimate of the CPC strength. Our two experimental values
agree with each other, and they both fall within the the-
oretically predicted range [21], which means we have an
independent way of finding the CPC strength without the need
to fit the throughput spectrum to a computer model. This gives
us a better method for locating the state of the system with
respect to the exceptional point and can improve sensing and
other applications of WGM microresonators.

II. THEORETICAL MODEL

We use a ring cavity model as shown in Fig. 1 to study the
dynamics of CPC in a microresonator. In Fig. 1, the subscripts
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FIG. 1. Ring cavity representing tapered-fiber coupling to a mi-
croresonator with intracavity cross-polarization coupling. This figure
is reproduced from Ref. [22].

1 and 2 refer to the two orthogonal polarizations. E f j is the
input amplitude of polarization j, and

Er j = r jE f j + it jEs j (1)

is the throughput amplitude of polarization j. Es j is the in-
tracavity mode amplitude just before output coupling. The
input and output coupling coefficients are taken to be equal,
as discussed in Ref. [22], and given by it j , with r2

j = 1−t2
j =

1 − Tj .
In Fig. 1, δ j and α jL are the round-trip phase (modulo 2π )

and intrinsic loss for mode j; L is the resonator circumference;
the intracavity mode amplitudes just after input coupling, Ec j ,
are not used in the analysis below. Cross-polarization coupling
is represented in Fig. 1 as an effective intracavity wave plate
and expressed by the coefficients –t12 and t21, where t2

12 =
1−r2

12 and t2
21 = 1−r2

21 are the polarization rotation probabili-
ties per round trip, called Ts and Tp in Ref. [21].

The intracavity mode amplitudes Es j satisfy the following
time evolution equations [22]:

d

dt
Es1 = −γ1Es1 − t12

τrt1
Es2 + it1

τrt1
E f 1 − it2t12

τrt1
E f 2,

d

dt
Es2 = −γ2Es2 + t21

τrt2
Es1 + it2

τrt2
E f 2 + it1t21

τrt2
E f 1. (2)

With these and Eq. (1), the time evolution of the throughput
amplitudes can be found. In Eq. (2), τrt j = n jL/c is the round-
trip time for mode j, where nj is the effective refractive index
of the mode, and

γ j = Tj + α jL

2τrt j
− i

δ j

τrt j
= κ j (1 + iθ j ), (3)

with κ j being the amplitude decay rate, or half the inverse
of the photon lifetime in mode j, and θ j being the offset of
the resonant frequency of mode j from the input frequency in
units of half the mode linewidth.

The parameters appearing in Eqs. (1)–(3) are related to ex-
perimentally measurable quantities as follows. Knowledge of
the input frequency ν and measurement of the mode linewidth
[full width at half maximum (FWHM) of a throughput dip]


ν j gives the quality factor Qj of mode j and its total loss
Tj + α jL:

Qj = ν


ν j
= 2πn jL

λ(Tj + α jL)
, (4)

where λ is the vacuum wavelength. The coupling and intrin-
sic losses can be determined individually from the fractional
depth Mj of a mode’s resonant throughput dip and the cou-
pling regime:

Mj = 4x j

(1 + x j )2 , where x j = Tj

α jL
. (5)

Undercoupling and overcoupling mean x j < 1 and x j > 1,
respectively; a given Mj can occur for two values of x j whose
product is 1, so knowledge of the coupling regime determines
the values of Tj and α jL. The round-trip phase δ j is related to
the detuning of the input light frequency ν from the mode j
resonance frequency ν j by

δ j = 2πn jL

c
(ν − ν j ). (6)

In this work, only polarization 1 is input (E f 2 = 0), and the
CMIT effects are observed in the mode 1 throughput.

If we assume the CPC strength Tc = t12t21 is very small and
both modes are resonant, Eq. (2) can be recast in the form of
a second-order differential equation for Es1 that has the form
of a damped driven oscillator. From this, the complex decay
constants of the supermodes resulting from the CPC of modes
1 and 2 are found to be [22]

β± = κ1 + κ2

2
±

√(κ1 − κ2

2

)2

− Tc

τrt1τrt2
, (7)

showing the transition from CMIT to ATS when Tc is large
enough to make the radicand negative and produce frequency
splitting.

Consider the case of one component where that component
is the only input and is resonant and sinusoidally modulated in
amplitude at frequency 
 as follows: E f 1 = A f 1e–i
t , E f 2 =
0. Then we have, assuming Es1 = As1e–i
t ,

As1

A f 1
= (
 + iκ2)t1/τrt1


2
0 − 
2 − i
(κ1 + κ2)

, (8)

where 
2
0 = κ1κ2 + Tc/τrt1τrt2 is the resonance frequency of

the damped driven oscillator; this leads to a way of determin-
ing the CPC coupling strength Tc. From Eqs. (8) and (1), we
can find the ratio of throughput intensity to input intensity (ac-
tually, the ratio of squared modulation amplitudes) for mode
1 being driven on resonance:∣∣∣∣ Ar1

A f 1

∣∣∣∣
2

=
(

2

0 − 
2 − T1κ2/τrt1
)2 + 
2(κ1 + κ2 − T1/τrt1)2(


2
0 − 
2

)2 + 
2(κ1 + κ2)2
.

(9)
The ratio in Eq. (9) will be zero when both terms in the

numerator vanish; for nonzero 
, vanishing of the second
term leads to the following relation to ensure vanishing of the
first term,


2
min = 
2

0 − κ2(κ1 + κ2) ≈ 
2
0 − κ1κ2 = Tc

τ 2
rt

, (10)
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where the two round-trip times have been taken to be equal
(assuming an effective refractive index of 1.36 for each of
the two WGMs [21]) and the approximation holds when the
two Qs are very different, specifically when Q2 � Q1 (so
κ2 � κ1). Thus, the CPC strength can be found directly from
the modulation frequency that zeros the throughput modu-
lation amplitude. In practice, minimizing that amplitude is
sufficient, at least in the cases of CMIT and ATS, because even
when the second numerator term is not zero, the first will be
minimized at a value of 
 that is not very different from the

min of Eq. (10). Calculations using approximate parameter
values and experimental results both lead to an estimated 10%
uncertainty in determining 
 = 
min.

The ring cavity model described above has been incorpo-
rated into a Mathematica program for calculation of the CMIT
and CMIA behavior resulting from CPC. In the program, mea-
sured experimental parameter values are input, and the CPC
strength is treated as an adjustable parameter. The program
has previously been used to determine the CPC strength by
fitting the experimental throughput spectrum, and to study
slow and fast light in CMIT and CMIA by modulating the
input with a Gaussian pulse [22]. In the results presented here,
the input amplitude is sinusoidally modulated to predict the
expected throughput modulation amplitude and phase shift.
The modulation frequency that gives the minimum through-
put modulation amplitude on resonance determines the CPC
strength via Eq. (10).

To check the approximations made in Eq. (10) and in its
derivation, we considered some experimentally realistic cases
of CMIT and ATS in the model program described above
when artificial Tc values were input [34]. For those test cases,
the program was used to find the modulation frequency 
min

giving the minimum throughput modulation amplitude on
resonance. In these examples, the square of 
min depended
linearly on Tc. This showed that our approximation in Eq. (10)
is reasonable, at least for CMIT and ATS where the two
Qs are very different. In general, Eq. (10) allows us to find
Tc to within 20%, where part of the uncertainty is in the
estimate of the effective refractive indices that appear in the
round-trip times. Having thus established a proportional rela-
tion between 
2

min and Tc, we can directly estimate the CPC
strength experimentally by simply finding the modulation fre-
quency corresponding to minimum modulation amplitude on
resonance, without the need to fit the throughput spectrum to
a computer model.

III. EXPERIMENTAL RESULTS

To determine the CPC strength in CMIT and ATS, we used
an experimental setup [22] as shown in Fig. 2.

The tunable diode laser (λ = 1508–1580 nm) is scanned
in frequency by a function generator (FG1). The free-space
output beam from the laser head passes through an anamor-
phic prism (AP) and optical isolator (OI). An acousto-optic
modulator (AOM), controlled by function generator FG2, is
then used to amplitude-modulate the deflected beam. Before
going to the fiber coupler (FC), the deflected light beam passes
through a set of wave plates (WP) which are used to control
the input polarization. Usually, the wave plates are adjusted
to provide linearly polarized light incident on the microres-

FIG. 2. Experimental setup for dynamical determination of the
CPC strength in a single microresonator. This figure is reproduced
from Ref. [22].

onator. The fiber coupler FC launches the light into a single
mode fiber. The fiber isolator is used to prevent interference
due to backward propagating light. The single mode fiber is
also mounted in a compression-based polarization controller
(PC), for further regulation of the input polarization. The
region of the fiber after the PC is tapered to a diameter of
2–3 μm for coupling to the microresonator and kept short and
straight to preserve the polarization. The throughput light is
collimated and sent to a polarization analyzer (PA), described
below.

We use a hollow-bottle resonator (HBR) [35] in our experi-
ments. Due to its bottle shape, the HBR has some advantages.
Bottle resonators provide the benefits of high Q, tunability
(by stretching), axial mode confinement, and mode selectivity
(by axial positioning of the coupling fiber). A WGM in an
HBR is described by three mode indices: The azimuthal index
m is the number of wavelengths in the circumference, the
radial index p is the number of radial intensity maxima, and
the axial index q is the number of axial field nodes. The
WGMs of an HBR can be tuned easily by stretching the
resonator, and the two polarizations tune at different rates, so
coresonance can be imposed, rather than having to achieve it
by coincidence. To make the HBR, a fused-silica capillary is
internally etched with a hydrofluoric acid–methanol solution
to thin its walls to a thickness of 5–10 μm, and then a short
length is heated using a hydrogen torch while under internal
air pressure, leading to the formation of a bottle-shaped bulge
[36]. A typical HBR used in our experiments is shown in
Fig. 3.

The coupling region of the fiber is made adiabatically bita-
pered and brought into contact with the HBR in its equatorial
plane (axial position of maximum diameter). The HBR is
mounted on a piezo-controlled holder for strain tuning. In all
cases, the resonator is kept inside an acrylic box to minimize
temperature fluctuations and other effects of air movement.
The collimated output light is sent to a polarization analyzer
(PA) which includes the polarizing beam splitter (PBS) and
two detectors, a fast detector (1) and a slow detector (2). The
PA can be rotated about the fiber axis so that either detector
can detect either polarization.

Adjustment of the input polarization to TE or TM and
strain tuning to coresonance will result in the throughput
power vs scanned laser frequency showing the spectral fea-
tures of CMIT or ATS because of CPC. For either TE or
TM input polarization, we need to observe the CMIT or ATS
feature on the fast detector (1) to see the throughput response

053534-3



KE, RAJAGOPAL, AND ROSENBERGER PHYSICAL REVIEW A 104, 053534 (2021)

FIG. 3. A hollow-bottle resonator (HBR) obtained by manual
compression of air inside the capillary. Initial diameter of the cap-
illary is about 350 μm and the diameter at the bulge is about
500 μm. The wall thickness is about 5 μm after etching.

to the input amplitude modulation (Fig. 4). The modulation
frequency of the AOM is in the range of a few MHz, and
the slow detector cannot respond to these frequencies. So,
in our experiments when we have TE input, we can observe
the throughput response in the fast detector channel without

FIG. 4. Modulation response on the fast detector channel (upper,
blue trace) and on the slow detector channel (lower, yellow trace)
at a modulation frequency of 1 MHz. As we change the modulation
frequency, there is an obvious minimum in the amplitude on reso-
nance (at the central peak) in the fast detector response while the
slow detector response (output polarization orthogonal to input) is
unaffected.

rotating the analyzer. When we have TM input, we simply
rotate the analyzer by 90 °.

During the experiment, CPC obscures the individual mode
parameters of the coresonant TE and TM modes. Therefore,
to determine the individual mode linewidths, quality factors,
dip depths, and coupling regimes, detuning the modes from
coresonance is necessary. To do this, as detailed in Ref. [22],
the HBR is stretched axially for strain detuning. Then we can
look at the individual modes in each polarization and measure
their mode parameters. The orthogonally polarized modes are
then brought back to coresonance, recovering the CMIT or
ATS feature and confirming that it results from CPC. Further
confirmation comes from the presence of some nonzero power
in the orthogonal polarization throughput channel in Fig. 4,
indicating that our CMIT or ATS effects are truly the result
of cross coupling between the two polarizations rather than
interference between modes of the same polarization. The
individual mode parameters are then used to fit the model
throughput spectrum to the experimental spectrum by adjust-
ing the value of CPC strength in the model to get our first
estimate of Tc [22]. Examples of numerical fitting of CMIT
and ATS for estimating the value of Tc are shown in Figs. 5(a)
and 6(a), respectively.

In each case, a second estimate of Tc is found by turning on
the input modulation and finding the modulation frequency
that gives the minimum throughput amplitude on resonance
(at the central peak) relative to the input modulation ampli-
tude (throughput, measured far off resonance). The relation in
Eq. (10) gives that other estimate of Tc. Figures 5(b) and 6(b)
show the relative modulation amplitude at the fitted Tc given
by the model, as well as the observed minimum relative mod-
ulation amplitude in the experiment and the corresponding
modulation frequency, which is used to calculate the second
value of Tc. In the captions, detuning refers to the difference
ν2–ν1 of the resonant frequencies of the two WGMs—the
frequency of the orthogonal WGM relative to the frequency
of the driven WGM. The detunings are less than the width of
the higher-Q WGM and do not affect the second method of
finding Tc.

In Figs. 5(b) and 6(b), the experimentally observed mini-
mum resonant throughput amplitude is indicated by the green
dashed line. Since the simulated throughput modulation is
based on the fitted Tc, if the simulated and experimental
throughput modulation amplitudes agree, the value of the
modulation-derived Tc should be nearly equal to the fitted Tc.
The results of the two methods agree to within 2.5% in the
case of Fig. 5, and to within 15.5% in the case of Fig. 6.

Since the AOM produces full amplitude modulation, the
input essentially consists of just the two sidebands at ±νmin =
± 
min/2π . This means that the throughput modulation am-
plitudes in Figs. 5(b) and 6(b) roughly match the throughput
at the minima in Figs. 5(a) and 6(a), respectively, which are
located at approximately ±νmin relative to the central peak.

The finite response time of the AOM limits the modulation
frequency to less than 10 MHz. This then restricts the range
of cases of CMIT and ATS for which both methods of finding
Tc can be applied.

The presence of mode overlap in the throughput spectra
can make it difficult to find clear CMIT and ATS features.
However, by using tapered fibers with different diameters and
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FIG. 5. CMIT (TE input) with 200-μm-radius HBR. (a) Model
throughput spectrum (blue solid line) fit to the experimental through-
put (gray trace), giving Tc = 1.99 × 10–8. This figure [panel (a)] is
reproduced from Ref. [21]. (b) Model-predicted resonant throughput
modulation (blue, amplitude of 0.40) relative to input modula-
tion (gray, amplitude of 1.0), corresponding to the fitted Tc in
(a). Mode parameters: Q1 = 9.6 × 106, Q2 = 5.2 × 107; M1 = 0.70
(undercoupled), M2 = 0.65 (undercoupled); detuning = 2.3 MHz.
An experimental minimum relative modulation amplitude of 0.40
was found (green dashed line) at 4.0 MHz using the AOM, giving
Tc = 2.04 × 10–8.

positioning the fiber carefully near the HBR’s equator (axial
position of maximum diameter), it was possible to reduce the
mode density and minimize mode overlap of the WGMs.

For twenty cases of CMIT and ATS, using four HBRs with
different radii and different tapered fiber diameters (HBR radii
180, 190, 200, and 220 μm; tapered fiber diameters ranging
from 2 to 3 μm), we estimated the CPC strength Tc (fit) from
model fitting and found another estimate of CPC strength
Tc (mod) from amplitude modulation. For each case, we use
Eq. (7) to determine if it is CMIT or ATS. In Table I the values
of Tc from numerical fitting and from amplitude modulation
are compared; the modulation frequencies νmin range from 3.5
to 10.0 MHz. The first 15 cases have TE input, while the last
five cases have TM input. The effective refractive indices of
the two WGMs are assumed to be n1 = n2 = 1.36 [21].

FIG. 6. ATS (TE input) with 180-μm-radius HBR. (a) Model
throughput spectrum (blue solid line) fit to the experimental through-
put (gray trace), giving Tc = 3.98 × 10–8. (b) Model-predicted
resonant throughput modulation (blue, amplitude of 0.19) relative
to input modulation (gray, amplitude of 1.0), corresponding to the
fitted Tc in (a). Mode parameters: Q1 = 8.0 × 106, Q2 = 2.3 × 107;
M1 = 0.93 (undercoupled), M2 = 0.72 (undercoupled); detuning =
–2.0 MHz. An experimental minimum relative modulation amplitude
of 0.15 was found (green dashed line) at 6.7 MHz using the AOM,
giving Tc = 4.65 × 10–8.

The uncertainty in log10(Tc) is ∼0.1 in all the fitting done
in the cases shown here, which means the Tc found by fitting
has an uncertainty of 20%. The uncertainty in νmin is about
10%, as discussed earlier, so the uncertainty in the Tc found by
modulation is also 20%. The percent difference is calculated
as [Tc(mod) − Tc(fit)]/Tc(average). Of the results, those with
absolute percent difference less than 32% are within the ex-
pected experimental error; these comprise 14 out of 20 cases,
consistent with 1σ uncertainty.

Comparison of the results of the two experimental methods
of determining Tc is also shown graphically in Fig. 7. For each
case in Table I, a point in Tc(fit)–Tc(mod) space is plotted,
along with its error ellipse. A point lying on the solid 45 ° line
would have Tc(mod) = Tc(fit). The two dashed lines represent
the 32% expected experimental uncertainty limit noted above,
and points between the dashed lines indicate agreement to
within this limit. Another way to evaluate agreement is to note
that points whose error ellipses intersect the solid 45 ° line
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TABLE I. Comparing the values of Tc from numerical fitting and
from amplitude modulation at νmin = 
min/2π .

νmin Effect Q1, Q2 Tc (fit) Tc (mod) Diff.
(MHz) (×107) (×10–8) (×10–8) (%)

3.5 CMIT 1.5, 8.6 10 1.26 1.88 39.6
4.0 CMIT 0.96, 5.2 1.99 2.04 2.5
4.0 CMIT 1.6, 9.7 2.51 2.04 –20.7
4.5 CMIT 0.77, 3.7 1.58 2.10 28.3
5.0 CMIT 0.41, 5.0 2.51 2.59 3.1
6.5 CMIT 0.64, 6.4 3.98 4.86 19.9
6.5 CMIT 0.77, 5.4 1.26 4.36 110
4.1 ATS 0.19, 5.3 1.00 1.74 54
4.2 ATS 2.3, 2.9 1.99 1.82 –8.9
5.2 ATS 1.3, 2.7 3.16 2.79 –12.4
6.7 ATS 0.80, 2.3 3.98 4.65 15.5
7.2 ATS 0.85, 1.4 6.31 5.97 –5.5
8.5 ATS 0.58, 3.7 10.0 8.32 –18.3
9.0 ATS 1.3, 1.4 12.6 8.39 –40.5
9.5 ATS 0.50, 1.6 10.0 11.5 14.0
4.8 CMIT 0.75, 5.3 1.26 2.38 61.5
6.1 ATS 0.76, 2.7 3.16 3.84 19.4
7.5 ATS 0.70, 2.7 6.31 7.20 13.2
9.5 ATS 0.94, 2.0 6.31 9.37 39.0
10.0 ATS 0.45, 1.1 12.6 11.5 –9.1

are also within experimental uncertainty. From Fig. 7, we see
again that 14 out of 20 cases agree within experimental error.

Comparison between experiment and theory would require
knowledge of the mode numbers m, p, and q for both WGMs.
The estimated range of possible values of p and q [21] would
lead to an uncertainty in Tc (theory) of nearly plus or minus
two orders of magnitude. The experimental values are signifi-
cantly more precise.

It can be seen from Table I and Fig. 7 that a positive percent
difference is about twice as likely as a negative one. This can
be understood from Eqs. (9) and (10). In the usual case of
mode 1 being undercoupled, the expression in the second set
of parentheses of the numerator of Eq. (9) will be positive;
as a result, minimizing the first term in the numerator gives a
minimum frequency somewhat larger than the expression in
Eq. (10), slightly overestimating the value of Tc (mod). Only
if mode 1 is overcoupled, or if the two Q values are not very
different, will Tc(mod) be less than Tc(fit).

IV. CONCLUSIONS

Based on our results, we can say that we have developed an
independent method of estimating the CPC strength, using in-
put amplitude modulation, without the need to fit a numerical
simulation to the experimental results. So far, we have three
different methods for finding the CPC strength: a theoretical
calculation, based on the transverse structure of WGMs of
known mode numbers [21], and two experimental estimates,
first by fitting a computational model to the experimental
throughput spectrum to infer the CPC strength indirectly as in
Ref. [22], and second by directly estimating the CPC strength
from the response of the throughput amplitude to a sinusoidal
modulation, as presented here. All three methods give the

FIG. 7. Comparison of two methods of measuring Tc; data from
Table I. If the two methods gave exactly the same value, the point
for each case would fall on the solid line. A point lying between the
dashed lines indicates agreement of the two methods to within exper-
imental uncertainty. Agreement is also indicated by the intersection
of a point’s error ellipse with the solid line.

same range of orders of magnitude of the CPC strength, and
the two experimental methods agree with each other, without
requiring knowledge of the mode numbers of the WGMs.

Here, for the cases of CMIT and ATS, most of our results
show reasonable agreement between the two experimental
methods for determining the CPC strength. For the cases
differing by more than the expected error, there might be
several explanations. First, the CMIT feature itself can be hard
to observe cleanly given the possibility of mode overlap in
our experiment, and this can also lead to misidentification of
the modes involved when they are detuned from coresonance.
Second, our measurements of the individual mode parameters
may not be completely accurate in every case; for example, it
can be difficult to determine the coupling regime for a WGM
with a deep throughput dip.

In addition to the potential experimental difficulties noted
above, two assumptions made in our theoretical analysis may
be violated in some cases. We assumed Q2 � Q1, but in five
of the examples of Table I, the ratio of quality factors is about
2 or less, and the value found for Tc(mod) may be less than
Tc(fit) since then κ2

2 cannot be neglected in Eq. (10). Also, the
second term in the numerator of Eq. (9) will usually not be
zero, as assumed; this can lead to Tc(mod) being greater than
or less than Tc(fit) for mode 1 undercoupled or overcoupled,
respectively, as noted in the previous section.

Based on our previous work [21], the theoretical model
used here allows for CPC from mode 1 to mode 2 to have
a different strength than CPC from mode 2 to mode 1. This
can be confirmed experimentally by observing the output po-
larized orthogonally to the input. We are currently pursuing
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further CMIT and ATS experiments to test this feature of the
model and to determine the two CPC strengths separately.
This coupling nonreciprocity can make the properties of the
exceptional point more interesting [32,33].

Other experimental goals are to further reduce mode over-
lap, to find more cases with Q2 � Q1, and to replace the AOM
with a faster modulator, expanding the range of cases in which
the two experimental methods can be compared. The results
from further experiments will be analyzed to predict which
parameter ranges should enhance experimental observation of
the CPC effects.

The coupling effect between orthogonally polarized modes
in a single resonator can lead to CMIT, CMIA, or ATS.
These effects enable slow light or fast light and have other
potential applications. Being able to determine the intermode
coupling strength without model fitting will help us to get
a better understanding of the dynamics of the CPC effect in

microresonators. A good method for locating the exceptional
point may enhance sensor applications of microresonators.
For example, the analysis presented here also applies in the
case of coupled resonators, if the coupling between resonators
is not too strong. That coupling can be adjusted by varying
the gap between the resonators, and so the system can be set
at the exceptional point to take advantage of the enhanced
sensitivity. We also expect other applications to be improved
with the help of our dynamical study.
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