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ABSTRACT  

Adiabatically tapered fibers are often used to excite whispering gallery modes (WGMs) of microresonators used as 
chemical sensors.  Recently it was demonstrated that using a non-adiabatic tapered fiber can enhance refractive index 
sensing.  The incoming light is distributed between fundamental and higher-order fiber modes, whereas only the 
fundamental mode is detected because the uptaper is adiabatic.  The interference effect between these fiber modes when 
exciting a WGM leads to the sensitivity enhancement.  We have shown theoretically that even greater enhancement is 
possible for absorption sensing.  For a given WGM, the predicted enhancement can be calculated by measuring the 
throughput power when the two fiber modes are in and out of phase at the input.  Enhancement can be confirmed by 
sending the light in the reverse direction through the asymmetrically tapered fiber so that only one fiber mode is incident 
on the microresonator.  Using a carefully designed asymmetrically tapered fiber, we have demonstrated this 
enhancement in experiments using a hollow bottle resonator (HBR) with an internal analyte.  Absorption in the analyte 
causes a change in the WGM throughput fractional dip depth; these changes were studied with varying analyte 
concentration for forward and reverse propagation to evaluate the absorption sensitivity.  For both liquid and gaseous 
analytes, our measured sensitivity enhancements are not inconsistent with the predicted enhancements of at least a factor 
of 100. 

Keywords:  microresonator, whispering-gallery modes, chemical sensing, non-adiabatic tapered fibers. 

1.  INTRODUCTION 
Whispering gallery mode (WGM) microresonators have been studied in detail in recent decades.  They have high quality 
factors and small mode volumes and hence have been widely used as optical sensors, offering high sensitivity.  In 
practical applications, WGM microresonators have been used to monitor changes in pressure, temperature, chemical 
composition, refractive index, and other quantities.1 

From the operational point of view, optical WGM sensors detect through the registration of changes in their spectral 
response due to perturbations in the surrounding environment.  The most-used spectral features of a WGM are its 
resonance frequency and linewidth.  The resonance frequency of a WGM shifts with a change in the refractive index of 
the surrounding medium, whereas different physical phenomena such as absorption and scattering can affect the 
linewidth of a WGM.  Thus sensors based on resonance frequency and linewidth rely on changes in resonance frequency 
and linewidth, respectively, upon the interaction of a WGM with its surroundings.  In addition to the change in 
linewidth, physical phenomena such as absorption can also induce a change in another spectral property, namely the 
resonant throughput dip depth, and thus absorption sensing can be studied in detail by monitoring the change in the dip 
depth of a WGM. 

Previously it was demonstrated that absorption sensing based on dip depth change could provide better sensitivity than 
frequency shift measurements.2  Experimental evidence3 was provided by introducing trace gases into the surroundings 
of a cylindrical fused silica microresonator, and strain-tuning a WGM through a trace gas absorption line.  The WGM’s 
effective intrinsic loss gets modified and hence, on resonance with the trace gas absorption line, the dip depth changes by 
an amount that depends on the external evanescent fraction of the WGM interacting with its surroundings. 
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right of resonance, respectively.  An analysis similar to that shown in Table 1 was done.  The theoretical enhancement 
factor was 152 ± 9, and the experimental enhancement factor was found to be 14 (+140/-14).  

 

6. DISCUSSIONS 
This work demonstrates an enhancement in chemical absorption sensitivity when a non-adiabatic tapered fiber is used 
instead of an adiabatically tapered fiber to couple light into a microresonator.  For the forward propagation case, the 
experimental dip depth is in good agreement with the theoretical dip depth predicted by the model, showing that the 
internal evanescent fraction f of this mode was 0.25.  This tells us that the model is reliable and that this WGM is one of 
fairly high radial order.  Even though there is a large uncertainty in the experimental sensing enhancement, the 
enhancement is evident from the throughput spectra shown in Figs. 5 and 6.  A better comparison of the results of 
forward and reverse propagation, and hence between experimental and theoretical enhancement, will be given by a new 
model that is currently under development. 

REFERENCES 

 
 [1] Foreman, M. R., Swaim, J. D., and Vollmer, F., "Whispering gallery mode sensors," Adv. Opt. Photon. 7, 168-240                          

(2015). 
 [2] Rosenberger, A. T., “Analysis of whispering-gallery microcavity-enhanced chemical absorption sensors,” Opt. 

Express 15, 12959-12964 (2007). 
[3] Farca, G., Shopova, S. I., and Rosenberger, A. T., “Cavity-enhanced laser absorption spectroscopy using 

microresonator whispering-gallery modes,” Opt. Express 15, 17443-17448 (2007). 
[4] Ward, J. M.,  Dhasmana, N., and Nic Chormaic, S., “Hollow core, whispering gallery resonator sensors,” Eur. Phys. 

J. Spec. Top. 223, 1917–1935 (2014).  
[5] Murugan, G. S., Petrovich, M. N., Jung, Y., Wilkinson, J. S., and Zervas, M. N., “Hollow-bottle optical 

microresonators,” Opt. Express 19, 20773-20784 (2011). 
[6] Stoian, R.-I., Bui, K. V., Rosenberger, A. T., “Silica hollow bottle resonators for use as whispering gallery mode 

based chemical sensors,” J. Opt. 17, 125011 (2015). 
[7] Rosenberger, A. T., “Absorption sensing enhancement in a microresonator coupled to a non-adiabatic tapered 

fiber,” Proc. SPIE 10548, 105480G (2018). 
[8] Birks, T. A., and Li, Y. W., “The Shape of Fiber Tapers,” J. Lightwave Technol. 10, 432-438 (1992). 
[9] Zibaii, M. I., Latifi, H., Karami, M., Gholami, M., Hosseini, S. M., and Ghezelayagh, M. H., “Non-adiabatic tapered 

optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. 
Sci. Technol. 21, 105801 (2010). 

[10] Latifi, H., Zibaii, M. I., Hosseini, S. M., and Jorge, P., “Nonadiabatic Tapered Optical Fiber for Biosensor 
Applications,” Photonic Sensors 2, 340–356 (2012). 

[11] Muhammad, M. Z., Jasim, A. A., Ahmad, H., Arof, H., and Harun, S. W., “Non-adiabatic silica microfiber for strain 
and temperature sensors,” Sensors and Actuators A 192, 130-132 (2013). 

[12] Luo, L., Pu, S., Tang, J., Zeng, X., and Lahoubi, M., “Reflective all-fiber magnetic field sensor based on microfiber 
and magnetic fluid,” Opt. Express 23, 18133-18142 (2015). 

[13] Zhang, K., Wang, Y., and Wu, Y.-H., “Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a 
microresonator,” Opt. Express 42, 2956-2959 (2017). 

 

Proc. of SPIE Vol. 10904  109041D-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


