
Citation: Rajagopal, S.R.;

Rosenberger, A.T. Enhancement of

Dissipative Sensing in a

Microresonator Using Multimode

Input. Sensors 2022, 22, 6613.

https://doi.org/10.3390/s22176613

Academic Editor: Egbert

Oesterschulze

Received: 19 July 2022

Accepted: 29 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancement of Dissipative Sensing in a Microresonator Using
Multimode Input †

Sreekul Raj Rajagopal and A. T. Rosenberger *

Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
* Correspondence: atr@okstate.edu
† This paper is an extended version of our conference paper: Rosenberger, A.T.; Rajagopal, S.R. Enhanced dissipative

sensing in a microresonator with multimode input (theory). In Proceedings of SPIE 11296, Optical, Opto-Atomic,
and Entanglement-Enhanced Precision Metrology II, San Francisco, CA, USA, 25 February 2020; p. 112963D.

Abstract: Optical whispering-gallery microresonators have proven to be especially useful as chemical
sensors. Most applications involve dispersive sensing, such as the frequency shift of resonator modes
in response to a change in the ambient index of refraction. However, the response to dissipative
interaction can be even more sensitive than the dispersive response. Dissipative sensing is most often
conducted via a change in the mode linewidth owing to absorption in the analyte, but the change
in the throughput dip depth of a mode can provide better sensitivity. Dispersive sensing can be
enhanced when the input to the microresonator consists of multiple fiber or waveguide modes. Here,
we show that multimode input can enhance dip-depth dissipative sensing by an even greater factor.
We demonstrate that the multimode-input response relative to single-mode-input response using the
same fiber or waveguide can be enhanced by a factor of more than one thousand, independent of the
mode linewidth, or quality factor (Q), of the mode. We also show that multimode input makes the
dip-depth response nearly one hundred times more sensitive than the linewidth-change response. These
enhancement factors are predicted by making only two measurements of dip depth in the absence of an
analyte: one with the two input modes in phase with each other, and one with them out of phase.

Keywords: microresonator; whispering-gallery modes; dissipative sensing; multimode fiber

1. Introduction

Optical microresonators have been a topic of much research and application in recent
decades. They typically have high quality factors and small mode volumes and hence have
been widely used as high-sensitivity sensors [1]. In particular, whispering-gallery mode
(WGM) microresonators have been used to monitor changes in pressure, temperature,
chemical composition, and refractive index, as well as other quantities [2,3].

A microresonator such as a sub-mm-diameter fused silica microsphere can support
optical modes known as WGMs. In a WGM, light circulates by total internal reflection in the
sphere’s equatorial plane, just under the surface, with a resonance when there are an integral
number of wavelengths around the circumference. Light is coupled into a WGM from an
optical fiber, tapered to a waist diameter of about 2 µm, tangent to the microsphere. The
optical power transmitted down the fiber after the microsphere (throughput) is monitored
as the frequency of the input light is scanned. Because of the microsphere’s intrinsic loss,
αL, due to scattering and absorption, the throughput power shows a Lorentzian dip as the
frequency scans through a WGM resonance. The light circulating in a WGM experiences
another loss, T, denoting outcoupling back into the fiber waist. The linewidth of the
Lorentzian dip is proportional to the total loss, αL + T, but the relative throughput dip
depth M depends on the ratio of the losses, y = αL/T:

M =
4y

(1 + y)2 . (1)

Sensors 2022, 22, 6613. https://doi.org/10.3390/s22176613 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5202-730X
https://orcid.org/0000-0001-6598-4360
https://doi.org/10.3390/s22176613
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176613?type=check_update&version=1


Sensors 2022, 22, 6613 2 of 10

M is the depth of the Lorentzian resonance dip relative to the throughput off resonance.
Off resonance, no light is coupled into the WGM, and the throughput equals the input.
Note that M << 1 for y << 1 (strong overcoupling) and for y >> 1 (strong undercoupling),
but M = 1 for y = 1, leading to full extinction of the throughput. This condition, of αL = T
and M = 1 (zero throughput), is referred to as critical coupling. Because light in the
WGM is confined by total internal reflection, it has an evanescent component outside the
microresonator that can interact with the environment, enabling dispersive and dissipative
sensing of chemicals in the ambient medium.

For chemical sensing, optical WGM sensors detect via the registration of changes in
their throughput spectral response due to perturbations in the environment probed by
the evanescent (or interacting) fraction [4] of the WGM. The most-used spectral features
of a WGM are its resonance frequency and linewidth, used for dispersive and dissipative
sensing, respectively. The resonance frequency of a WGM shifts with a change in the
refractive index, whereas loss mechanisms such as absorption and scattering in the ambient
medium can increase the linewidth of a WGM. In addition to the change in linewidth,
dissipative phenomena also induce a change in the resonant throughput dip depth, and
thus dissipative sensing can be studied in detail by monitoring the change in the dip depth
of a WGM.

Previously, it was demonstrated that absorption sensing based on fractional dip depth
change could provide better sensitivity than frequency shift measurements [5]. Experi-
mental confirmation [6] was provided by introducing trace gases into the surroundings
of a cylindrical fused silica microresonator, and strain-tuning a WGM through a trace gas
absorption line. The WGM’s effective intrinsic loss becomes modified and hence, on reso-
nance with the gas absorption, the dip depth changes by an amount that depends on the
external evanescent fraction of the WGM interacting with its surroundings. In addition to
the external evanescent fraction, the internal evanescent (or interacting) fraction of a hollow
microresonator, which can be much larger than the external fraction, can also be used for
sensing purposes [2,3]. A thin-walled hollow bottle resonator (HBR) is ideally suited for
use as a WGM-based optical absorption sensor [3,7,8]. More evidence for microresonator-
based dissipative sensing being more sensitive than dispersive sensing has recently been
provided [9–14].

In this work, we show how dissipative sensing in a microresonator can be enhanced
by using multimode input. Light is coherently coupled into a single microresonator mode
simultaneously from two waveguide or tapered-fiber modes, but only the throughput
on the fundamental mode is detected. The interference effects involved in the addition
of the outcoupled light to the “reflected” light (not coupled into the microresonator) to
form the throughput can make the dip depth very sensitive to analyte absorption. We
show that the sensitivity (fractional change in dip depth for a given analyte concentration)
can be enhanced more than thousandfold compared to the sensitivity of the same system
with single-mode input. We further show that the sensitivity can be nearly a hundred
times that of using the change in WGM linewidth for detection of the same analyte. These
enhancement factors are independent of system details and are predicted by making only
two measurements of dip depth in the absence of analyte: one with the two input modes
in phase with each other, and one with them out of phase. We show that this dissipative
sensing technique can easily be implemented with a tapered-fiber-coupled HBR for internal
detection of an analyte in solution or trace gas in air.

2. Materials and Methods

The results presented in the next section are based on the following method of analysis
of the system described in the last paragraph of the Introduction. First, consider the system
in more detail. Typically, a WGM of a microresonator is excited by coupling in tunable
laser light from a single fiber mode, using an adiabatically tapered fiber. The enhancement
scheme uses a non-adiabatic tapered fiber to couple light from two fiber modes into the
microresonator, as illustrated in Figure 1. The WGM will belong to one of two polarization
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families, TE (transverse electric) or TM (transverse magnetic). The input light in the fiber
will be linearly polarized to match the WGM polarization.
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Figure 1. Multimode input to a microresonator. (Fiber not to scale but enlarged to show detail). Light
in the untapered single-mode fiber strongly couples into two fiber waist modes of amplitudes Ei1 and
Ei2. They then couple weakly into a WGM of amplitude E with input coupling coefficients it1 and it2,
respectively. The WGM then couples out into throughput modes of amplitudes Er1 and Er2 with output
coupling coefficients equal to the input coefficients. Only the fundamental throughput mode survives to
be detected, since the higher-order mode cannot propagate in the untapered single-mode fiber.

The situation illustrated in Figure 1 shows a single-mode fiber with an asymmetric
bitaper producing a microfiber waist. Because the downtaper is nonadiabatic, two modes
are excited on the waist: fundamental (1) and higher-order (2); they couple into the WGM.
Outcoupled light goes into both waist modes, but only the fundamental survives passage
through the adiabatic uptaper. The resonant throughput dip is monitored for enhanced
change due to absorption in an analyte interacting with the WGM’s evanescent fraction.
This technique is generic; the specifics of the waveguide and microresonator do not matter.
What is needed is two-mode input, with the two input (waist) modes having different
propagation constants so that their relative phase on coupling into the microresonator
depends on the position of the coupling point along the fiber waist; a filter (adiabatic
uptaper) to ensure that throughput on only one mode (the fundamental) is detected; and a
dissipative loss that changes the net intrinsic loss of the microresonator’s mode (such as an
absorbing analyte interacting with a WGM’s evanescent fraction). The theory presented
here thus applies to a large possible range of waveguide–resonator systems. A brief sketch
of this theory [15] and preliminary experimental confirmation [16] have been presented
earlier, and full experimental results will be published elsewhere [17].

The coupling of incident tapered fiber modes into the WGM is coherent, that is, the
amplitude coupled into the WGM is the sum of the complex amplitudes of the coupled
portions of the two incident modes. The independence of the waist modes, and the
condition that energy be conserved when the cavity has no intrinsic loss, lead to certain
relations among the coupling (transmission) and reflection coefficients. If

t2
1 = 1− r2

1,

t2
2 = 1− r2

2,
(2)

where itn and rn are the coupling and external reflection coefficients for mode n, energy
conservation requires that

1− r2 = t2
1 + t2

2 = T1 + T2, (3)

where r is the internal reflection coefficient for the cavity mode and Tn is the transmissivity
for mode n. The transmissivities are assumed to be small, i.e., Tn << 1.

Consider cw incident waves and steady-state response. Ei1 and Ei2eiβ are the ampli-
tudes of the two incident modes, with their relative phase β depending on the position of
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the microresonator along the fiber waist. Then, the intracavity WGM mode amplitude E,
just after the input coupling, is given by

E =
it1Ei1 + it2Ei2eiβ

1− re−αL/2eiδ , (4)

where L is the cavity round-trip length, αL is the intrinsic round-trip power loss, and δ is
the round-trip phase accumulation modulo 2π, proportional to the detuning of the incident
light from the cavity resonance. Since we assume that no intermode coupling occurs in
the second transition region (adiabatic uptaper), and that mode 2 is lost while mode 1 is
captured by the untapered fiber core, the throughput amplitude of mode 1 becomes

Er1 = r1Ei1 + it1Ee−αL/2eiδ = r1Ei1 −
t2
1Ei1 + t1t2Ei2eiβ

1− re−αL/2eiδ e−αL/2eiδ. (5)

However, power is what we measure, so we want the square modulus of this. We
can evaluate to the lowest order in the small quantities Tn << 1, αL << 1, δ << 1. The last
condition applies because δ increases by 2π when the detuning equals the free spectral
range of the cavity, the cavity Q (and thus its finesse) is very high, and we must be relatively
near resonance (within several linewidths). Then we find

|Er1|2 =

∣∣∣∣∣∣
(

T2+αL−T1
2 − iδ

)
Ei1 −

√
T1T2Ei2eiβ

T1+T2+αL
2 − iδ

∣∣∣∣∣∣
2

. (6)

Far away from the cavity resonance, at large detunings, δ, note that the limiting value
of |Er1|2 is |Ei1|2. It is therefore convenient to describe the resonance throughput dip (or
peak, or feature, in general) in terms of a relative throughput power R; note that a peak
means that R > 1. With the definition of m = Ei2/Ei1, we have:

Rδβ =

∣∣∣∣Er1

Ei1

∣∣∣∣2 =

∣∣∣∣∣∣
(

T2+αL−T1
2 − iδ

)
−
√

T1T2meiβ

T1+T2+αL
2 − iδ

∣∣∣∣∣∣
2

. (7)

Equation (7) shows how the throughput spectrum can exhibit different features. For
example, for β = 0 a symmetric dip is normally observed; for β = π a symmetric peak can
appear; and for arbitrary β an asymmetric Fano-like lineshape will result. The multimode
input can make this Fano lineshape steeper than normal, resulting in enhanced dispersive
sensitivity [18–23]. We show here that even greater enhancement can be produced for
the dissipative sensitivity. To that end, note that on resonance (δ = 0) Equation (7) can be
written as

R0β =
(T1 − T2 − αL)2 + 4T1T2m2 + 4(T1 − T2 − αL)

√
T1T2m cos β

(T1 + T2 + αL )2 . (8)

In the next section we show how application of the method detailed above leads to
the sensitivity enhancements described in the Introduction. All the assumptions made in
this section are experimentally realistic, with one exception: the input and output coupling
coefficients may not be equal, because phase matching is not required for efficient fiber–
resonator coupling. The assumption of equality is often reasonable [24] but will not hold
in general [25]. However, as we show below, whether the input and output coupling
coefficients are equal is irrelevant to our results.
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3. Results
3.1. Enhancement—Two-Mode vs. One-Mode

Note that the relative throughput power in Equation (8) depends on the three quantities
T1, T2 + αL, and T2m2. Since the total loss is related to the linewidth ∆ν of the mode by

T1 + T2 + αL =
4π2na∆υ

c
, (9)

where a is the microresonator radius, n is the WGM’s effective refractive index, and c is the
speed of light, the values of the three quantities can be found by measuring the linewidth
along with R00 and R0π; details will be given in a later subsection. The dip depth is given by

M0β = 1− R0β =
4T1(T2 + αL)− 4T1T2m2 − 4(T1 − T2 − αL)

√
T1T2m cos β

(T1 + T2 + αL)2 . (10)

Our dissipative sensing is based on measuring the fractional change in dip depth (with
β = 0) due to absorption by the analyte effectively increasing the intrinsic loss by dαL. The
effective intrinsic loss can be written as

αL = αiL + f αsL + f αaL, (11)

where αi is the intrinsic loss coefficient of the microresonator which includes scattering,
absorption, and radiation losses, αs is the absorption coefficient of the solvent (if necessary),
αa is the absorption coefficient of the analyte, and f is the fraction of the WGM [4] which
interacts with the solvent and analyte: thus, dαL = fdαaL. The fractional change in dip depth
is expressed in terms of the derivative of M00 with respect to αL:

1
M00

dM00

dαL
=

T1(T1 − T2 − αL) + 2T1T2m2 + (3T1 − T2 − αL)
√

T1T2m
(T1 + T2 + αL )

{
T1(T2 + αL)− T1T2m2 − (T1 − T2 − αL)

√
T1T2m

} . (12)

If m = 0, Equation (12) gives the fractional change in dip depth for the same additional
loss that would be found using the same waveguide or microfiber waist, but with only the
fundamental mode incident. The absolute value of the ratio of Equation (12) with arbitrary
m to Equation (12) with m = 0 thus gives the sensitivity enhancement factor of two-mode
input relative to one-mode input:

η21 =

∣∣∣∣∣ (T2 + αL)
[
T1(T1 − T2 − αL) + 2T1T2m2 + (3T1 − T2 − αL)

√
T1T2m

]
(T1 − T2 − αL )

{
T1(T2 + αL)− T1T2m2 − (T1 − T2 − αL)

√
T1T2m

} ∣∣∣∣∣. (13)

We see that the enhancement depends on the same three quantities as the relative
throughput power in Equation (8), T1, T2 + αL, and T2m2; if they are all nearly equal,
the denominator in Equation (13) becomes small and the enhancement will be large. For
example, if T2m2 is just slightly larger than T1, and T2 + αL is just slightly larger than
T2m2, it can be seen from Equation (8) that the throughput for β = 0 will show a shallow
dip (R00 < 1) and the throughput for β = π will have a small peak (R0π > 1). For m = 0,
Equation (8) shows near critical coupling (R ~ 0). An example of the observations that
indicate the near equality of T1, T2 + αL, and T2m2, and thus a large enhancement factor,
are illustrated in Figure 2. Assume a WGM with a linewidth of 12 MHz (Q = 1.61 × 107 for
a wavelength of 1550 nm), where it is found that R00 = 0.940 and R0π = 1.040 for two-mode
input, and where one-mode input results in near-critical coupling with M = 0.9937. These
are conditions that are easily achievable experimentally.
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Figure 2. Conditions leading to large sensitivity enhancement. Relative throughput power R = Pt/Pi

from a fiber-coupled microresonator WGM is plotted as a function of detuning from WGM resonance.
With two incident fiber modes, a shallow dip results if they are in phase (purple dashed curve,
R00 = 0.940) and a small peak appears if they are out of phase (blue dotted curve, R0π = 1.040). With
one incident fiber mode, the coupling is near critical (red solid curve, M = 0.9937).

Observations of throughput spectra like those shown in Figure 2 predict a large
enhancement factor. Before analyzing what is meant by this large sensitivity enhancement,
consider some of the assumptions made. It is assumed that there are two incident modes;
however, the microfiber waist has many modes that are above cutoff. Nevertheless, with a
proper design of the non-adiabatic downtaper it is possible to excite only the fundamental
and one higher-order mode (or at least one cluster of higher-order modes with nearly
equal propagation constants) [16,17]. It is further assumed that light in the microresonator
couples out into only those two modes. Again, by choosing the ratio of the resonator
radius to the fiber waist radius properly, it is possible to achieve this [24]. If there is some
outcoupling into even higher-order modes, it will simply appear to be an extra intrinsic
loss. By treating the change in dip depth as a differential, we seem to be implying that
dM00/M00 << 1; however, dM00 = −dR00, and R00 is near 1, whereas |M00| << 1. The
fractional change in throughput power R00 is small, so the differential formalism works
even when dM00/M00 ~ 1. The remaining assumption is that the coupling coefficients for waist
mode to resonator mode and resonator mode to waist mode are equal. In the next subsection,
this assumption will be dropped, and we will see that our results are not affected.

3.2. Case of Different Input and Output Coupling

Revisit Figure 1, and now let the input coupling coefficients be itn, as before, but now
call the output coupling coefficients iτn. Output coupling is a loss for the resonator mode,
so the linewidth gives the total loss again via the relation

τ2
1 + τ2

2 + αL =
4π2na∆υ

c
. (14)

Now measuring R00 and R0π allows the determination of two other quantities, 2τ1t1
and τ1t2m; along with the total loss (note that in the case of equal input and output coupling,
the three quantities could have been chosen to be T1, T1 + T2 + αL, and T2m2), these three
quantities are all that are needed to determine the enhancement, η21. Finding these three
quantities using the same values of the linewidth, R00, and R0π as in the previous subsection,
we obtain the same value of η21.

This result is indicative of a deeper meaning. Because the cases of arbitrary m and
m = 0 involve the same resonator mode and the same input/output coupling coefficients,
any effect of input–output coupling difference cancels. This suggests that even further
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simplification is possible; note that the total loss does not depend on m, so the enhancement
factor η21 turns out to be independent of the resonator mode linewidth or quality factor
Q. Therefore, the enhancement can be found simply from the values of R00 and R0π ; the
situation where R00 is slightly less than 1 and R0π is slightly greater than 1 will allow for
large enhancement, as we now demonstrate explicitly.

3.3. Simple Expression for Enhancement Factor

To find the expression for the enhancement factor in terms of R00 and R0π , consider
Equation (8) for the relative throughput power evaluated for the incident fiber modes in
phase (β = 0) and out of phase (β = π):

R00 =

(
T1 − T2 − αL + 2

√
T1T2m

T1 + T2 + αL

)2

,

R0π =

(
T1 − T2 − αL− 2

√
T1T2m

T1 + T2 + αL

)2

.
(15)

Then, with the following definitions,

R1 =
√

R0π −
√

R00 and R2 =
√

R0π +
√

R00, (16)

we find that the three quantities of interest can be written as

T1 =
(T1 + T2 + αL)

2

[
1− 1

2 R1

]
,

T2 + αL =
(T1 + T2 + αL)

2

[
1 + 1

2 R1

]
,

2
√

T1T2m =
(T1 + T2 + αL)R2

2
.

(17)

Now notice that Equations (12) and (13) share a common factor; using Equations (16) and (17)
to evaluate that factor in terms of R00 and R0π, Equations (12) and (13) become

1
M00

dM00

dαL
=

1
T1 + T2 + αL

[
2
√

R00

1−
√

R00

]
(18)

and

η21 =

∣∣∣∣ T2 + αL
T1 − T2 − αL

∣∣∣∣ 2
√

R00

1−
√

R00
=

∣∣∣∣∣1− 1
2
(√

R00 −
√

R0π

)
√

R00 −
√

R0π

∣∣∣∣∣ 2
√

R00

1−
√

R00
. (19)

Now, since R00 is typically slightly less than 1 and R0π is typically slightly greater than
1, Equation (19) can be approximated:

η21 =

∣∣∣∣∣1− 1
2
(√

R00 −
√

R0π

)
√

R00 −
√

R0π

∣∣∣∣∣ 2
√

R00

1−
√

R00
≈
∣∣∣∣ 2
R00 − R0π

∣∣∣∣ 4
M00

. (20)

Although the derivation of this simplified form of the enhancement factor η21 was
conducted assuming equal input and output coupling coefficients, the same expression is
found if this assumption is not made, as in the previous subsection.

Consider, for example, the conditions illustrated in Figure 2, where R00 = 0.940 and
R0π = 1.040. From Equations (16) and (17) it is seen that T1, T2 + αL, and T2m2 are all
nearly equal; the exact expression in Equation (20) gives η21 = 1299 and the approximate
expression gives η21 = 1333.

Thus, the sensitivity (fractional change in dip depth) enhancement for two-mode input
compared to one-mode input can be greater than three orders of magnitude. Now consider
the second factor in the expression for η21 in Equation (20).
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3.4. Enhancement—Dip-Depth vs. Linewidth

That second factor was seen in Equation (18) as well: it turns out to be the enhancement
for dip-depth sensing relative to linewidth sensing, ηdl. Consider the expression for the
WGM linewidth in Equation (9). It is easy to see that

1
∆ν

d∆ν

dαL
=

1
T1 + T2 + αL

. (21)

Therefore, from Equation (18) we have

ηdl =
1

M00

dM00

dαL
/

1
∆ν

d∆ν

dαL
=

2
√

R00

1−
√

R00
≈ 4

M00
. (22)

For R00 = 0.940, as in Figure 2, the exact value of ηdl is 63.7 and its approximate value
is 66.7. Thus, the dip-depth sensitivity is nearly two orders of magnitude greater than the
linewidth sensitivity. Note especially that this enhancement factor, ηdl, is independent of
the WGM’s linewidth and Q; a larger Q will increase the dip-depth sensitivity by the same
factor as that by which it increases the linewidth sensitivity.

A few other enhancement factors, for experimental values of R00 and R0π , are shown
in Table 1. Both the enhancement of two-mode input relative to one-mode input, η21, and
the enhancement of dip-depth sensing relative to linewidth sensing, ηdl, are given, showing
that the conditions of Figure 2 are typical.

Table 1. Enhancement factors. Two-mode input relative to single-mode input, η21, and dip-depth
sensing relative to linewidth sensing, ηdl.

R00 R0π η21 ηdl

0.940 1.040 1299 63.7
0.973 1.026 5542 145
0.911 1.043 648 41.9
0.936 1.040 1167 59.5

4. Discussion

The origin of the large sensitivity enhancement factor for two-mode input compared
to one-mode input can be understood in terms of the coherent coupling of the fiber modes
into and out of the WGM. Consider one-mode input: the near equality of T1 and T2 + αL
means that the coupling is near critical, as illustrated by the deep dip in Figure 2. Under
these conditions the outcoupled part of the intracavity field, which is out of phase with
the input field because of the product of the input coupling coefficient it1 (it1 or it2 in the
two-mode case) and output coupling coefficient it1, nearly cancels the uncoupled input
field, so there is very little throughput power. On the other hand, when there is two-mode
input with the two incident modes in phase and T1 and T2m2 nearly equal, the intracavity
field will be roughly twice as large, so the portion outcoupled into the fundamental fiber
mode will be nearly twice as great as the uncoupled input field, but out of phase with it,
resulting in only a small observed change in throughput power (shallow dip). Absorption
by the analyte reduces the very large intracavity field by a small fraction, but that then
translates to a substantial change in the throughput dip depth when the outcoupled field
interferes with the uncoupled fundamental input field.

The very large value of the enhancement factor η21 is therefore due, in part, to the
fact that the coupling is near critical in the one-mode case, where the dip-depth sensitivity
is expected to be low [5]. However, the two-mode dip-depth sensitivity is even greater
than that of the one-mode case far from critical coupling, as seen by the following. Since
Q = ν/∆ν, Equation (9) shows that the first factor on the right-hand side of Equation (18)
is proportional to Q. Now evaluate the right-hand side of Equation (12) with T2 = 0, as in
the ideal one-mode case, and note that it is proportional to the intrinsic quality factor Qi,
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which is inversely proportional to αL. Equating the left-hand sides of these two equations
(the dip-depth sensitivity) results in the following relation (x = T1/αL, and can range from
<<1 to >>1):

Qi =

∣∣∣∣1 + x
1− x

∣∣∣∣ 2
√

R00

1−
√

R00
Q ≈

∣∣∣∣1 + x
1− x

∣∣∣∣ 4
M00

Q. (23)

This says that to have the same dip-depth sensitivity with a one-mode system, the
resonator’s intrinsic quality factor must be at least a factor of 63.7 times as large as the Q in
the two-mode system of Figure 2. This means Qi ~ 109, which is pushing the limit of what
can be achieved in fused silica.

Probably the most important result of this work is that the two-mode dip-depth
sensitivity is quite a bit greater (nearly two orders of magnitude) than the sensitivity
that would be found by measuring the relative change in WGM linewidth induced by
the analyte absorption. This comparison is reminiscent of that of reference [26], where
resonance amplitude is shown to be as important as the Q value for dispersive sensing
in microresonators. In addition, because the experimental uncertainty in measuring dip
depth is about 2%, compared to a 5% uncertainty in measuring linewidth, the dip-depth
limit of detection (LOD) is enhanced by an extra factor of about 2.5 above the sensitivity
enhancement ηdl. For example, with the conditions of Figure 2, the dip-depth LOD would
be about 160 times smaller than the linewidth LOD.

Dip-depth sensing has the advantages of being affected very little by drifts or fluctu-
ations in input power or resonance frequency. Since the dip depth is a relative measure,
it is independent of the input power. In addition, because the dip depth is measured at
resonance, it is unaffected by a change in the resonance frequency.

As illustrated in Table 1, the enhancement factors found from the example of Figure 2,
η21 = 1299 for two-mode vs. one-mode and ηdl = 63.7 for dip-depth vs. linewidth, are
typical and not overly optimistic estimates. The publication of experimental results for
sensing of a dye in methanol solution, now in preparation [17], will show some cases with
even greater enhancement factors than those of Figure 2. Note that our enhancement factors
assume the same change in loss, dαL (see Equation (22), for example). Since dαL = fdαaL,
to compare the responses for the same change in analyte absorption dαaL, f must have a
fixed value; in other words, the same WGM must be used. In addition, since the fractional
change in dip depth, dM00/M00, is proportional to dαL, the response to a given change
in analyte absorption will be greater in the case of a larger interacting fraction, f, hence
the advantage of internal sensing in a hollow resonator. It is our hope that this sensing
enhancement will make near-IR detection of greenhouse gases such as methane and carbon
dioxide in a hollow-bottle microresonator more feasible and help to avoid the need for
complex and expensive mid-IR systems.
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